使用 EcoStruxure™ Control Expert 的 Premium 和 Atrium 用于步进电机的运动控制模块 用户手册

Schneider Belectric

(英语原始文件译文)

12/2018

本文档中提供的信息包含有关此处所涉及产品之性能的一般说明和/或技术特性。本文档并非用于 (也不代替)确定这些产品对于特定用户应用场合的适用性或可靠性。任何此类用户或设备集成商 都有责任就相关特定应用场合或使用方面对产品执行适当且完整的风险分析、评估和测试。 Schneider Electric 或其任何附属机构或子公司对于误用此处包含的信息而产生的后果概不负责。 如果您有关于改进或更正此出版物的任何建议、或者从中发现错误、请通知我们。

本手册可用于法律所界定的个人以及非商业用途。 在未获得施耐德电气书面授权的情况下,不得 翻印传播本手册全部或部分相关内容、亦不可建立任何有关本手册或其内容的超文本链接。施耐 德电气不对个人和非商业机构进行非独占许可以外的授权或许可。 请遵照本手册或其内容原义并 自负风险。与此有关的所有其他权利均由施耐德电气保留。

在安装和使用本产品时,必须遵守国家、地区和当地的所有相关的安全法规。出于安全方面的考虑和为了帮助确保符合归档的系统数据,只允许制造商对各个组件进行维修。

当设备用于具有技术安全要求的应用场合时,必须遵守有关的使用说明。

未能使用施耐德电气软件或认可的软件配合我们的硬件,则可能导致人身伤害、设备损坏或不正 确的运行结果。

不遵守此信息可能导致人身伤害或设备损坏。

© 2018 Schneider Electric。 保留所有权利。

目录

	安全信息	7
	关于本书	11
第I部分	Premium PLC 中的伺服驱动轴控	13
笙 1音	步进轴控的一般信息	15
	步进输出的 放口心	16
		10
		10
なっま		19
弗∠早	少 広 拙 の つ り 、 省 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	21
		22
	物理	23
	标准功能	24
第3章	实现方法	27
	安装阶段概述	27
第4章	说明性示例	29
	示例描述	30
	前提条件	34
	配置 TSX CFY 模块	35
	调整 TSX CFY 模块	38
	示例中变量的符号表示	39
	对初步处理进行编程	43
	SFC 编程	40
	5.6 % 流生	40
	れた。2011年1月11日1日11日11日11日11日11日11日11日11日11日11日11日	4/
		49
		51
	于	53
		55
第 部分	TSX CFY 轴控模块	57
第5章	安装	59
5.1	一般信息	60
	必要的基板配置	61
	安装过程	62
	接线的一般注意事项	63

5.2	译码器信号的连接	64
	信号标记	65
	通过 RS 422/485 接口与译码器连接	67
	通过 NPN 开路集极接口与译码器连接	68
	TSX TAP S15xx 接线附件概述	69
5.3	连接传感器/预执行器和电源模块	70
	信号标记	71
	连接	72
	将辅助输入和输出与处理器连接。	73
	连接 I/O 通道 0 的原理	74
	使用 TSX CDP 301 / 501 预接线线束连接	76
	与 TELEFAST 预接线系统的连接	77
	TELEFAST 上信号的可用性	78
	TELEFAST 端子与 HE10 连接器之间的对应关系	79
	接线注意事项	81
第6章	TSX CFY 的特性和维护	83
2004	一般特性	84
	译码器输入的特性(SUB-D 连接器)	85
	· 译码器输出的特性(SUB-D 连接器)	86
		87
	Q0 制动输出的特性	89
第7章	步进轴控的编程	91
	步进轴编程的原则	92
	操作模式	93
	对 SMOVE 功能进行编程(在自动模式下)	94
	输入 SMOVE 功能的参数	95
	SMOVE 功能参数的描述	96
	SMOVE 功能的指令代码	98
	使用 SMOVE 功能执行的基本运动的描述	100
	SMOVE 指令代码描述	102
	使用索引位置(重复运动)的示例	107
	运动命令排序	109
	延期的 PAUSE 功能	111
	馈给保持功能	113
	事件处理	115
	管理操作模式	116
	管理故障	117
	外部硬件故障的描述	120

	应用故障描述	122
	命令被拒绝故障的描述	123
	管理手动模式	124
	可视运动命令	126
	增量运动命令	128
	参考点命令	129
	强制参考点命令	130
	管理直接模式 (DIRDRIVE)	131
	管理停止模式 (OFF)	133
第8章	配置步进轴控	135
	·····································	136
	访问参数配置屏幕	138
	配置用户单位	140
	配置译码器的命令模式	142
	配置控制参数	144
	配置译码器反转	146
	配置译码器启用	147
	配置步进电机的制动	148
	配置事件任务	149
	参考点配置	150
	验证配置参数	155
第9章	调整步进轴控	159
	调整前的预备操作	160
	访问调整参数	161
	轨道调整	164
	调整制动输出	165
	调整停止阶段	166
	调整手动模式参数	167
	确认调整参数	168
	保存/恢复调整参数	169
	连接模式下的重新配置	170
第10章	调试步进轴控程序	173
	调试原理	174
	调试屏幕的用户界面	175
	调试屏幕描述	177
	有关调试屏幕的详细信息	179
	停止模式(关)	183
	直接模式(直接驱动器)	184

	手动模式(手动)	185
	自动模式(自动)	186
	通道诊断	187
	存储、文档和仿真	188
第11章	操作	189
	设计操作员对话框	189
第12章	诊断和维护	191
	故障监控和命令执行	192
	诊断帮助	193
第13章	补充功能	197
50 · 0 -	尺寸学习	197
第14章	特性和性能	201
200 I I -	性能特性和限制	201
第15章	应用程序专用的步进轴控语言对象	203
	应用专用分步轴控制功能的语言对象简介	204
	与应用专用功能关联的隐式交换语言对象	205
	与应用专用功能关联的显式交换语言对象	200
		206
	使用显式对象管理交换和报告	206
	使用显式对象管理交换和报告	206 208 212
	使用显式对象管理交换和报告 T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T STEPPER STD 类型的 IODDT 的内部控制对象(隐式交换)	206 208 212 214
	使用显式对象管理交换和报告 T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T STEPPER STD 类型的 IODDT 的内部控制对象(显式交换)	206 208 212 214 215
	使用显式对象管理交换和报告 T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(显式交换) T STEPPER STD 类型的 IODDT 的调整参数的对象(显式交换)	206 208 212 214 215 217
	使用显式对象管理交换和报告 T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(显式交换) T_STEPPER_STD 类型的 IODDT 的肉部控制对象(显式交换) 处理器与轴控模块之间的交换	206 208 212 214 215 217 218
	使用显式对象管理交换和报告 T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(显式交换) T_STEPPER_STD 类型的 IODDT 的调整参数的对象(显式交换) 处理器与轴控模块之间的交换 错误代码列表 (CMD_FLT)	206 208 212 214 215 217 218 219
	使用显式对象管理交换和报告 T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(显式交换) T_STEPPER_STD 类型的 IODDT 的内部控制对象(显式交换) T_STEPPER_STD 类型的 IODDT 的肉部控制对象(显式交换) CMULT T_STEPPER_STD 类型的 IODDT 的肉部控制对象(显式交换) T_STEPPER_STD 类型的 IODDT 的肉部控制对象(显式交换) 优理器与轴控模块之间的交换 错误代码列表 (CMD_FLT) T GEN MOD 类型 IODDT 语言对象的详细信息	206 208 212 214 215 217 218 219 223

安全信息

(i)

重要信息

声明

在试图安装、操作、维修或维护设备之前,请仔细阅读下述说明并通过查看来熟悉设备。下述特 定信息可能会在本文其他地方或设备上出现,提示用户潜在的危险,或者提醒注意有关阐明或简 化某一过程的信息。

在"危险"或"警告"标签上添加此符号表示存在触电危险,如果不遵守使用说明, 会导致人身伤害。

这是提醒注意安全的符号。提醒用户可能存在人身伤害的危险。请遵守所有带此符号 的安全注意事项,以避免可能的人身伤害甚至死亡。

危险表示若不加以避免,将会导致严重人身伤害甚至死亡的危险情况。

警告表示若不加以避免,可能会导致严重人身伤害甚至死亡的危险情况。

小心表示若不加以避免,可能会导致轻微或中度人身伤害的危险情况。

注意用于表示与人身伤害无关的危害。

请注意

电气设备的安装、操作、维修和维护工作仅限于有资质的人员执行。施耐德电气不承担由于使用 本资料所引起的任何后果。

有资质的人员是指掌握与电气设备的制造和操作及其安装相关的技能和知识的人员,他们经过安 全培训能够发现和避免相关的危险。

开始之前

不得将本产品在缺少有效作业点防护的机器上使用。如果机器上缺少有效的作业点防护,则有可 能导致机器的操作人员严重受伤。

▲ 警告

未加以防护的设备

- 不得将此软件及相关自动化设备用在不具有作业点防护的设备上。
- 在操作期间,不得将手放入机器。

不遵循上述说明可能导致人员伤亡或设备损坏。

此自动化设备及相关软件用于控制多种工业过程。根据所需控制功能、所需防护级别、生产方法、 异常情况、政府法规等因素的不同,适用于各种应用的自动化设备的类型或型号会有所差异。在 某些应用情况下,如果需要后备冗余,则可能需要一个以上的处理器。

只有用户、机器制造商或系统集成商才能清楚知道机器在安装、运行及维护过程中可能出现的各种情况和因素,因此,也只有他们才能确定可以正确使用的自动化设备和相关安全装置及互锁设备。在为特定应用选择自动化和控制设备以及相关软件时,您应参考适用的当地和国家标准及法规。National Safety Council's Accident Prevention Manual (美国全国公认)同样提供有非常有用的信息。

对于包装机等一些应用而言,必须提供作业点防护等额外的操作人员防护。如果操作人员的手部 及其他身体部位能够自由进入夹点或其他危险区域内,并且可导致人员严重受伤,则必须提供这 种防护。仅凭软件产品自身无法防止操作人员受伤。因此,软件无法被取代,也无法取代作业点 防护。

在使用设备之前,确保与作业点防护相关的适当安全设备与机械/电气联锁装置已经安装并且运 行。与作业点防护相关的所有联锁装置与安全设备必须与相关自动化设备及软件程序配合使用。

注意: 关于协调用于作业点防护的安全设备与机械/电气联锁装置的内容不在本文档中功能块库、 系统用户指南或者其他实施的范围之内。

启动与测试

安装之后,在使用电气控制与自动化设备进行常规操作之前,应当由合格的工作人员对系统进行 一次启动测试,以验证设备正确运行。安排这种检测非常重要,而且应该提供足够长的时间来执 行彻底并且令人满意的测试。

▲ 警告

设备操作危险

- 验证已经完成所有安装与设置步骤。
- 在执行运行测试之前,将所有元器件上用于运送的挡块或其他临时性支撑物拆下。
- 从设备上拆下工具、仪表以及去除碎片。

不遵循上述说明可能导致人员伤亡或设备损坏。

执行设备文档中所建议的所有启动测试。保存所有设备文档以供日后参考使用。

必须同时在仿真与真实的网络境中进行软件测试。

按照地方法规(例如:依照美国 National Electrical Code)验证所完成的系统无任何短路且未安 装任何临时接地线。如果必须进行高电位电压测试,请遵循设备文档中的建议,防止设备意外损 坏。

在对设备通电之前:

- 从设备上拆下工具、仪表以及去除碎片。
- 关闭设备柜门。
- 从输入电源线中拆除所有的临时接地线。
- 执行制造商建议的所有启动测试。

操作与调节

下列预防措施来自于NEMA Standards Publication ICS 7.1-1995(以英文版本为准):

- 无论在设计与制造设备或者在选择与评估部件时有多谨慎,如果对此类设备造作不当,将会导 致危险出现。
- 有时会因为对设备调节不当而导致设备运行不令人满意或不安全。在进行功能调节时,始终以 制造商的说明书为向导。进行此类调节的工作人员应当熟悉设备制造商的说明书以及与电气设 备一同使用的机器。
- 操作人员应当只能进行操作人员实际所需的运行调整。应当限制访问其他控件,以免对运行特性进行擅自更改。

关于本书

概览

文档范围

本手册介绍 Premium PLC 中使用 Control Expert 软件的步进电机运动控制应用程序的软件实施。

有效性说明

此文档适用于 EcoStruxure™ Control Expert 14.0 或更高版本。

本文档中描述的设备技术特性在网站上也有提供。要在线访问此信息:

步骤	操作
1	访问 Schneider Electric 主页 <u>www.schneider-electric.com</u> 。
2	在 Search 框中键入产品参考号或产品系列名称。 ● 勿在参考号或产品系列中加入空格。 ● 要获得有关类似模块分组的信息,请使用星号(*).
3	如果您输入的是参考号,则转至 Product Datasheets 搜索结果,单击您感兴趣的参考号。 如果您输入产品系列的名称,则转到 Product Ranges 搜索结果,单击您感兴趣的产品系列。
4	如果 Products 搜索结果中出现多个参考号,请单击您感兴趣的参考号。
5	根据屏幕大小,您可能需要向下滚动查看数据表。
6	要将数据表保存为 .pdf 文件或打印数据表,请单击 Download XXX product datasheet。

本手册中介绍的特性应该与在线显示的那些特性相同。依据我们的持续改进政策,我们将不断修 订内容,使其更加清楚明了,更加准确。如果您发现手册和在线信息之间存在差异,请以在线信 息为准。

相关文档

文档标题	参考号
使用 EcoStruxure™ Control Expert 的 Premium 和 Atrium 处理器、机架 和电源模块实施手册	35010524(英语), 35010525(法语), 35006162(德语), 35012772(意大利语), 35006163(西班牙语), 35012773(简体中文)
使用 EcoStruxure™ Control Expert 的 Premium 和 Atrium 伺服电机轴控 制模块用户手册	35006220(英语), 35006221(法语), 35006222(德语), 35014004(意大利语), 35006223(西班牙语), 35014005(简体中文)
EcoStruxure™ Control Expert, 操作模式	33003101(英语)、 33003102(法语)、 33003103(德语)、 33003104(西班牙语)、 33003696(意大利语)、 33003697(简体中文)
EcoStruxure™ Control Expert I/O 管理功能块库	33002531(英语)、 33002532(法语)、 33002533(德语)、 33003684(意大利语)、 33002534(西班牙语)、 33003685(简体中文)

您可以在我们的网站 <u>www.schneider-electric.com/en/download</u>下载这些技术出版物和其他技术信 息。

关于产品的资讯

▲警告
意外的设备操作
应用此产品要求在控制系统的设计和编程方面具有经验。只允许具有此类专业知识的人士对此产 品进行编程、安装、改动和应用。
请遵守所有当地和国家/地区的安全法规和标准。
不遵循上述说明可能导致人员伤亡或设备损坏。

第I部分 Premium PLC 中的伺服驱动轴控

本部分的目标

本部分概述了步进轴控的范围,并介绍了轴的安装方法。

本部分包含了哪些内容?

本部分包括以下各章:

章	章节标题	页
1	步进轴控的一般信息	15
2	步进轴命令介绍	21
3	实现方法	27
4	说明性示例	29

第1章

步进轴控的一般信息

本章主题

本章介绍了步进轴控,并对步进轴控及关联的应用程序专用功能进行了描述。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
步进轴控范围简介	16
轴控模块的功能	17
步进轴控的一般信息	19

步进轴控范围简介

简介

下图显示了步进轴的控制架构:

步进轴控环境

Premium PLC 的步进轴控环境由两个模块组成:

- TSX CFY 11 (一个有限线性轴),
- TSX CFY 21(两个独立的有限线性轴)。

Control Expert 软件包括基本的应用专用步进运动功能,用于对这些步进轴控模块进行编程。

基本运动由机器的主要顺序控制程序驱动,而由 TSX CFY 模块执行和控制。

这些模块通过向译码器提供频率控制 (fmax = 187 KHz),控制步进电机的旋转速度及其加速度与减速度。译码器将每个脉冲转换成步进电机的基本运动。

以开路形式对步进电机进行控制。模块可使用运行终点、参考点和事件输入来控制运动部件在轴 上的运动。

某些译码器带有步故障机制:其信息可用于用户程序,这样可以创建新的参考点。

步进轴控环境还包括 TSX CXP 611 电缆,用以将 TSX CFY11/21 模块直接链接到 Phyton Lektronik GmbH 制造商提供的 MSD 和 MS 译码器。

轴控模块的功能

一般信息

轴控模块提供每个轴的应用程序输入和输出,使您可以实现不同的功能。 下面的细分结构显示了与通道关联的输入/输出:

应用程序输入/输出

步进轴控模块为每个轴提供:

对于辅助输入/输出:

- 一个凸轮参考点输入,
- 两个运行终点输入,
- 一个事件输入,
- 一个紧急停止输入,
- 一个外部停止输入,
- 一个轴制动的静态输出。

对于译码器输入/输出:

- 一个译码器检查输入,
- 一个步故障控制输入,
- 一个差分译码器验证输出,
- 两个差分脉冲输出,一个为正,一个为负,
- 一个差分步进电机升压输出,
- 一个差分步故障复位输出。

对运动进行编程

在 Control Expert 语言中,每个运动都通过 SMOVE 运动控制功能来描述。利用 SMOVE 命令和 运动部件的位置,TSX CFY 模块创建位置/速度设定点并为该运动生成脉冲。

配置和控制参数

这些参数用于定义使用规范和限制等。

TSX CFY 模块的特定功能

由步进轴控模块提供的功能如下:

- **事件处理**:模块检测到的事件可用于激活顺序程序中的事件任务。
- 升压命令: 该功能允许您在加速或减速阶段对步进电机进行升压。
- 制动命令:该功能允许您在启动和停止运动时控制步进电机的制动。
- **馈给保持**:该功能允许您立即停止正在进行的运动。
- **延期暂停**:该功能允许您在不中断机器循环的情况下立即停止它。
- 运行终点限位:过冲这些限位将触发运动的停止。如果已过冲运动终点限位,则只允许进行返回限位之间的运动。
- **外部停止**:激活外部停止输入将导致运动的停止。
- 步故障输入和步故障控制复位输出:这些功能允许您通过应用程序管理来自译码器的步故障信息。对于模块,激活步故障输入不能成为停止条件或错误条件。

步进轴控的一般信息

专用功能介绍

步进轴控的专用功能适用于由以下部分组成的整个控制系统:

- 命令
- 译码器
- 步进电机。

重要概念如下:

- 启动停止频率 SS_FREQ
- 升压
- 制动输出

步进轴控系统图

本图描述了典型的步进轴控系统。

描述

功能块	描述
命令	命令功能通过 TSX CFY 11 或 TSX CFY 21 模块的通道执行。此通道主要提供一系列可 控频率的连续脉冲,以执行所需的功能。
译码器	译码器的基本功能为:通过在电机线圈中通入适当的电流,将每个收到的脉冲转换为电 机的步(基本旋转)。
步进电机	步进电机可采用不同的技术构建。例如永磁电机、可变磁阻电机以及结合了这两种技术 的混合电机。而且,市场中存在着各种线圈解决方案的电机:二相、四相或五相。 每种电机类型都带有根据自身技术进行优化的特定类型的译码器。

启动停止频率

由于惯性系统(电机和轴)需要对脉冲命令做出响应,因此对各种步进系统的控制通常必须遵守 共同的约束。共同的约束便是启动停止频率。

启动停止频率是在没有锯齿波和丢失步的情况下,电机可以停止或启动的频率。它的最大阈值由 与电机轴相关的外部惯性决定。它的平均值为 1/2 步内 400 Hz(1 转/秒),临界值超过 600/800 Hz(1.5 到 2 转/秒,这是 Phytron Elektronik 译码器/200 步进电机/车床的典型值)。

此约束适用于所有运动的启动或停止时刻,可从其名字中看出:**启动停止频率**,即 SS_FREQ。该 值可以使用 TSX CFY 模块进行调整。

注意: 在本手册中,术语频率和速度可以互换使用。同样,脉冲位置和脉冲的单位相同。速度单位 Hz 和脉冲/秒,以及加速度单位 Hz/秒和脉冲/秒² 也是如此。

升压

某些译码器具有升压输入。此功能可以使电机线圈中的电流增大。

TSX CFY 模块通道的升压输出控制着译码器的此输入。这样,便可以与运动同步地控制电机电流的强度。值得一提的是,此输出的自动控制模式可以在加速和减速阶段激活。

制动输出

当轴上出现制动时,可以与运动同步在用户请求时对此静态输出进行控制。

当要中断正在承受载荷的电机时,此功能非常有用。

注意: 当通道处于安全位置时, 此输出将激活制动(制动通常在失去电压时激活)。

第2章 步进轴命令介绍

本章主题

本章介绍了步进轴命令。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
一般信息	22
物理描述	23
标准功能	24

一般信息

提供步进轴命令

Premium PLC 的 TSX CFY 11/21 步进轴命令是为了满足机器制造商的需求而提供的。 它是针对其电机需要由步进运动命令控制的机器而设计的(电机由可编程 PLC 通过序列命令链

它是针对其电机需要田步进运动叩节控制的机器而设计的(电机田可编程 PLC 通过序列叩节链 接)。

示意图:

概览

有两个模块可用:

- TSX CFY 11 模块:一个轴、一个命令输出、一个编码器,
- TSX CFY 21 模块:两个轴、两个命令输出、两个译码器。

示意图:

物理描述

步进轴命令模块的描述。

TSX CFY 11 模块:

标准功能

示意图

步进轴命令模块的摘要:

TSX CFY 11/21 步进轴命令模块的功能

TSX CFM 11/21 轴命令模块的每个轴都具有以下功能:

- 输入
 - 译码器检查输入,
 - 步丢失的控制输入,
 - 终点正限位输入,
 - 终点负限位输入,
 - 参考点凸轮输入,
 - 事件输入,
 - 紧急停止输入,
 - 外部停止输入,
- 输出
 - 制动输出,
 - 正脉冲输出,
 - 负脉冲输出或方向,
 - 步丢失控制重新激活输出,
 - 升压输出,
 - 译码器使能输出。

第3章 实现方法

安装阶段概述

简介

应用专用模块的软件安装是在以下模式下通过不同的 Control Expert 编辑器完成的:

- 离线模式
- 在线模式

如果没有可以连接的处理器,Control Expert 会允许您使用仿真器执行初始测试。在这种情况下, 安装 (参见第 *28* 页)有所不同。

建议采用下面的安装阶段顺序,但可以更改某些阶段的顺序(例如,从配置阶段开始)。

存在处理器情况下的安装阶段

下表说明存在处理器情况下的各个安装阶段:

阶段	说明	模式
变量声明	应用专用模块的 IODDT 类型变量和项目变量的声明。	离线 (1)
编程	项目编程。	离线 (1)
配置	声明模块。	离线
	模块通道配置。	
	输入配置参数。	
关联	IODDT 与已配置通道的关联(变量编辑器)。	离线 (1)
生成	生成项目(分析和编辑链路)。	离线
传输	将项目传输到 PLC。	在线
调整/调试	从调试屏幕、动态数据表进行项目调试。	在线
	修改程序和调整参数。	
文档	生成文档文件以及打印与项目相关的其他信息。	在线 (1)
操作/诊断	显示项目的监督控制所必需的其他信息。	在线
	项目和模块的诊断。	
要点:		
(1)	还可以在其他模式中执行这些阶段。	

针对仿真器的实施阶段

下表显示了针对仿真器的各安装阶段。

阶段	说明	模式
变量声明	应用专用模块的 IODDT 类型变量和项目变量的声明。	离线 (1)
编程	项目编程。	离线 (1)
配置	声明模块。	离线
	模块通道配置。	
	输入配置参数。	
关联	IODDT 与已配置模块的关联(变量编辑器)。	离线 (1)
生成	生成项目(分析和编辑链路)。	离线
传输	将项目传输到仿真器。	在线
仿真	编程仿真(无输入/输出)。	在线
调整/调试	从调试屏幕、动态数据表进行项目调试。	在线
	修改程序和调整参数。	
要点:		
(1)	还可以在其他模式中执行这些阶段。	

注意: 仿真器仅用于离散量或模拟量模块。

第4章 说明性示例

本章主题

本章介绍了如何借助 TSX CFY 模块实施轴控应用程序。通过说明性示例,您可以了解实施步进轴 控所需要的各个阶段。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
示例描述	30
前提条件	34
配置 TSX CFY 模块	35
调整 TSX CFY 模块	38
示例中变量的符号表示	39
对初步处理进行编程	43
SFC 编程	46
转换编程	47
动作编程	49
后续处理的编程	51
手动模式下切换	53
调试	

示例描述

简介

通过以下示例,可以了解 TSX CFY 轴控应用程序的所有实施阶段。它是对设置方法的补充。

传输设备

传输设备用于移走加工出来的部件。该设备有一个机械爪,该机械爪可以在与地面平行的平面空间内(X、Y轴)移动。

只要某个部件出现在输出传送带 A 上,该机械爪就会自动提取该部件,并根据部件类型将其放在 传送带 B 或 C 上。然后,该机械爪返回待命位置,当检测到新的机械部件时,它将再次进行运 动。

下图解释了该传输设备:

输入/输出

输入/输出如下:

I/O	描述
C1	已加工部件检测元件
C2	用于识别部件类型的传感器。
C3	抓取器打开/抓取器闭合的检测传感器。
C4	部件跳变沿检测元件(位于抓取器中),与模块的事件输入连接。
ENC0	X 轴位置中的递增编码器。
ENC1	Y 轴位置中的递增编码器。
O/C 抓取器	打开/闭合机械爪命令。

应用程序的 SFC

应用程序的顺序图如下:

轨道描述

下图显示了抓取器的轨道:

- 1 速度为 Vp0 时的参考点,
- 2 以速度 Vret 运动至待命位置 (Xatt, Yatt) 后停止,
- 3 一旦检测到有部件加工完毕,就以速度 VA 向传送带 A (XA, YA) 运动,
- 4 以速度 VB 向传送带 B (XB, YB) 运动, 然后停止,
- 6 以速度 VC 向传送带 C (XC, YC) 运动, 然后停止,
- 5,7 以速度 Vret 运动至等待位置 (Xatt, Yatt), 然后停止。

人机界面的前面板

如下所示的控件按组分布在面板上,在安装失败的情况下,可以使用它们手动驱动运动部件。控 件和指示灯由离散量输入模块和离散量输出模块管理。

自动/手动 操作模式选择开关。 启动循环 执行自动循环。 停止循环 停止自动循环。 选择 X / Y 轴 选择要在手动模式下驱动的轴。 参考点 所选轴上的手动参考点。 前进/后退 用于所选轴正向或负向手动运动的控件。 故障 指示所有硬件故障和应用程序错误的指示灯。 确认故障 故障确认控件。 紧急停止 无论选择何种模式,都将立即停止运动部件。 打开抓取器 用于打开抓取器的控件。 关闭抓取器 用于关闭抓取器的控件。

前提条件

前提条件

此处仅描述专用于轴控的功能,因此必须假定已经执行了以下操作:

- Control Expert 软件已安装
- 已进行硬件安装:已经连接了驱动两个轴的模块和译码器。

配置 TSX CFY 模块

PLC 配置中的软件声明

启动 Control Expert 软件,选择**文件 → 新建**命令,选择 Premium 处理器。 从**项目浏览器**中,按以下方式访问配置编辑器:

步骤	操作
1	打开 工作站 文件夹(双击图标或单击其附件)。
2	打开 配置 文件夹(双击图标或单击其附件)。
3	双击 总线 X 图标。

然后,必须选择 PLC 配置的每个构成元素。在本应用程序中进行了以下选择:

- 机架 0 和机架 1: TSX RKY 8EX,
- 处理器:TSX P57 204,
- 电源模块:用于机架 0 的 TSX PSY 2600 和用于机架 1 的 TSX PSY 5500,
- 32 输入模块:在机架 0 的位置 3 中的 TSX DEY 32D2K,
- 32 输出模块:在机架 0 的位置 4 中的 TSX DSY 32T2K,
- 轴控制模块:在机架 1 的位置 3 中的 TSX CFY 21。

模块配置屏幕的示例

输入轴配置参数。

对于每个轴,按照以下方式输入配置参数:

调整 TSX CFY 模块

输入轴调整参数

对于每个轴,按照以下方式输入配置参数:

步骤	操作
1	选择机架 1 的位置 3,然后执行 编辑 → 打开模块 命令(或双击所选模块)。
2	单击 调整 选项卡。
3	 配置通道 0 的调整参数。为此: ● 选择通道 0, ● 按照以下屏幕输入调整参数:
	通道0的调整屏幕
	引道 明整 小道 500 Hz 加速度最高速度/ 300 毫秒 软件上限 19500 脉冲 软件下限 -500 脉冲 市动模式参数
4	使用 编辑 → 确认 命令或单击确认图标来确认您的输入。
5	重复从第 3 步开始的步骤,对模块的通道 1 执行相同的调整。
6	然后,使用 编辑 → 确认 命令或单击确认图标来确认全局配置。

示例中变量的符号表示

输入变量

通过在**应用程序浏览器**中双击可以访问符号项。例如,接着双击**变量**和**基本变量**图标可显示以下 屏幕,在该屏幕中可以输入下文所描述的所有变量。

变量输入屏幕

■ 数据编辑器				×
ののでの 変量 DDT 类型 功能块 DFB	类型			
	类型 ▼	地址 🔻	值 🔻 🖌	
│ 循环	Bool	%M0	Eller	
AXIS_X	T_STEPPER_STD	%CH0.3.0		
AXIS_Y	T_STEPPER_STD	%CH0.3.1		
X_STAND-BY	Dint	% MD50		
Y_STAND-BY	Dint	% MD52		
(
				۲
	1	1	1 <u> </u>	

内部变量符号

以下内部变量都可以用符号表示:

地址	符号	注释
%M0	CYCLE	工作模式下的机器状况
%MD50	X_STAND-BY	待命位置(X 轴)
%MD52	Y_STAND-BY	待命位置(Y 轴)
%MD54	X_B	传送带 B 的位置(X 轴)
%MD56	Y_B	传送带 B 的位置(Y 轴)
%MD58	X_C	传送带 C 的位置(X 轴)
%MD60	Y_C	传送带 C 的位置(Y 轴)

离散量输入模块的符号

离散量输入模块定位在机架 0 内的插槽 3 上。它的符号如下:

地址	符号	注释
%10.3.0	SENSOR_1	用于检测机械部件是否存在的探测器
%10.3.1	SENSOR_2	用于识别部件类型的传感器(0=类型 2,1=类型 1)
%10.3.2	SENSOR_3	用于检测机械爪是打开还是闭合的传感器
%10.3.3	AUTO_MAN	用于选择模式的开关(0=自动,1=手动)
%10.3.4	START_CYCLE	用于执行自动循环的按钮
%10.3.5	STOP_CYCLE	用于停止自动循环的按钮
1%10.3.6	SELECTION_X_Y	选择要在"手动"模式下驱动的轴(1=X,0=Y)
%10.3.7	PO_MAN	手动参考点
%10.3.8	Forward	正向移动运动部件
%10.3.9	BACK	负向移动运动部件
%10.3.10	ACK_ERROR	故障确认
%10.3.12	EMERGENCY_STOP	紧急停止
%10.3.13	OPEN_CLAW	用于打开机械爪的按钮
%10.3.14	CLOSE_CLAW	用于闭合机械爪的按钮

离散量输出模块的符号

离散量输出模块定位在机架 0 内的插槽 4 上。它的符号如下:

地址	符号	注释
%Q0.40.0	CLAW	用于打开或闭合机械爪的命令(0=打开,1=闭合)
%Q0.4.1	错误	发出信号表示出现错误

内部常量

内部常量中包括运动部件在不同轴上的速度。在轴为两个独立轴的情况下,这些常量的符号和值 如下:

地址	符号	值	注释
%KD0	SPEED_O_C	5000	相对于参考点,沿 X 轴和 Y 轴运动的速度
%KD4	SPEED_X_WAIT	10000	向 X 轴待命位置运动的速度
%KD6	SPEED_Y_WAIT	10000	向 Y 轴待命位置运动的速度
%KD8	SPEED_POS_A_X	15000	向 X 轴传送带 A 位置运动的速度
%KD10	SPEED_POS_A_Y	15000	向 Y 轴传送带 A 位置运动的速度
%KD12	SPEED_POS_B_X	15000	向 X 轴传送带 B 位置运动的速度
%KD14	SPEED_POS_B_Y	15000	向 Y 轴传送带 B 位置运动的速度
%KD16	SPEED_POS_C_X	12000	向 X 轴传送带 C 位置运动的速度
%KD18	SPEED_POS_C_Y	12000	向 Y 轴传送带 C 位置运动的速度

轴控模块的符号

轴控模块定位在机架1内的插槽3上。它的符号如下:

地址	符号	地址	符号
%CH1.3.0	AXIS_X	%CH1.3.1	AXIS_Y
%11.3.0.9	AT_POINT	%1103.1.9	AT_POINT_Y

与 T_STEPPER_STD 类型的 IODDT 链接的轴控模块的符号

下表显示了 T_STEPPER_STD 类型的 IODDT 对象,这些对象用于编程示例中的两个通道:

地址	标准符号
%lr.m.c.0	NEXT
%lr.m.c.1	DONE
%lr.m.c.2	AX_FLT
%lr.m.c.3	AX_OK
%lr.m.c.4	HD_ERR
%lr.m.c.5	AX_ERR
%lr.m.c.6	CMD_NOK
%lr.m.c.11	CONF_OK
%lr.m.c.12	REF_OK
%lr.m.c.16	IN_DROFF
%lr.m.c.17	IN_DIRDR
%lr.m.c.18	IN_MANU
%lr.m.c.19	IN_AUTO
%lr.m.c.35	ST_DRIVE
%Qr.m.c.0	DIRDRV
%Qr.m.c.1	JOG_P
%Qr.m.c.2	JOG_M
%Qr.m.c.3	INC_P
%Qr.m.c.4	INC_M
%Qr.m.c.5	SET_RP
%Qr.m.c.6	RP_HERE
%Qr.m.c.9	ACK_FLT
%Qr.m.c.10	ENABLE
%Qr.m.c.11	EXT_EVT
%MDr.m.c.22	RP_POS

对初步处理进行编程

简介

初步处理是管理操作模式的程序的开始部分。

出现阻塞错误:

- 图表已被禁用。
- 然后,可以在手动模式下驱动运动部件、更正错误并在面板中确认错误。
- 在更正和确认错误之后,将重新初始化图表。

切换至手动模式时:

- 图表已被禁用。
- 再次选择自动模式后将重新初始化图表。

使用梯形图语言进行编程

初始化位置

启动循环

Mod_>> = Mod_error DEPART_>> = DEPART_CYCLE ARRET_>> = ARRET_CYCLE

确认控制器

选择自动模式

选择手动模式

在出现错误或切换至手动模式时禁用图表

重新初始化图表

报告错误

SFC 编程

概览

SFC 用于编写应用程序的顺序处理方式:自动循环处理。

顺序处理

顺序处理的表示形式:

转换编程

概览

在 Grafcet 中描绘的转换是按以下方式编程的:

步骤 0 -> 1

!(*X 通道没有错误、打开机械爪、将 Auto_man 开关设置为"自动";Y 通道没有错误并且已激 活自动模式*)

NOT Axis_ch0.Ax_flt AND NOT Capteur_3 AND NOT Auto_man AND Cycle AND NOT Axis_ch1.Ax_flt AND Mode_Auto

步骤1->2

!(*测试:轴已就绪且已参考轴*)

Axis_ch0. Done AND Axis_ch0. Ref_OK AND Axis_ch1. Done AND Axis_ch1. Ref_OK

步骤 2 -> 3

!(*运动部件处在待命位置,检测到的部件位于传送带 A 上*)

Capteur_1 AND Cycle AND Axis_ch0.Next AND Axis_ch1.Next

步骤 3->4

!(*运动部件到位,准备收集传送带 A 上检测到的部件*)

Axis_ch0. At_point AND Axis_ch0. Next AND Axis_ch1. Next AND Axis_ch1. At_point

步骤 4 -> 5

!(*类型 1 部件,机械爪闭合*) Capteur 2 AND Capteur 3

步骤 4 -> 8

!(*类型 2 部件,机械爪闭合*) NOT Capteur 2 AND Capteur 3

步骤 5->6

!(*运动部件位于传送带 B 的正确位置*)

Axis_ch0. At_point AND Axis_ch0. Next AND Axis_ch1. Next AND Axis_ch1. At_point

步骤 8 -> 6

!(*运动部件位于传送带 C 的正确位置*)

Axis_ch0.At_point AND Axis_ch0.Next AND Axis_ch1.Next AND Axis_ch1.At_point

步骤 6->2

- !(*机械爪打开*)
- NOT Capteur_3 AND Cycle

动作编程

概览

在 Grafcet 中可以对每步的动作进行编程。可能的动作类型有三种:

- 激活时
- 连续
- 禁用时

如果没有对给定步的动作类型进行描述,这意味着尚未对其进行编程。

步骤 1: 激活时的动作

!(*沿着 X 轴和 Y 轴采集参考点*) SMOVE (Axis_ch0, 1, 90, 14, 0, Vitesse_p_o, 16#0000); SMOVE (Axis_ch1, 1, 90, 14, 0, Vitesse_p_o, 16#0000);

步骤 2: 激活时的动作

! (*运动至待命位置(Xatt,Yatt*)) SMOVE (Axis_ch0, 2, 90, 9, X_attente, Vitesse_x_attente, 16#0000); SMOVE (Axis_ch1, 2, 90, 9, Y_attente, Vitesse_y_attente, 16#0000);

步骤 3: 激活时的动作

! (*向传送带 A 运动*) SMOVE (Axis_ch0, 3, 90, 10, 19500, Vitesse_pos_a_x, 16#0000); SMOVE (Axis_ch1, 3, 90, 10, 19500, Vitesse_pos_a_y, 16#0000);

步骤4:连续动作

!(*闭合机械爪*) SET(Claw):

步骤 5: 激活时的动作

!(*运动至传送带 B*) SMOVE (Axis_ch0, 4, 90, 9, X_b, Vitesse_pos_b_x, 16#0000); SMOVE (Axis_ch1, 4, 90, 9, Y_b, Vitesse_pos_b_y, 16#0000);

步骤 8:激活时的动作

! (*运动至传送带 C*) SMOVE (Axis_ch0, 5, 90, 9, X_c, Vitesse_pos_c_x, 16#0000); SMOVE (Axis_ch1, 5, 90, 9, Y_c, Vitesse_pos_c_y, 16#0000);

步骤 6:连续动作

!(*打开机械爪*) RESET(Claw);

后续处理的编程

简介

后续处理即管理手动操作模式的程序的结尾部分。

MAST - POST

```
!(*测试所选模式*)
IF Mode_auto AND Mode_auto_y AND Axis_ch0.Conf_ok AND Axis_ch1.Conf_ok
THEN JUMP %L200:
END IF;
!(*选择要驱动的轴*)
%L100: IF NOT Selection x y
THEN JUMP %L200:
END IF;
!(*在 X 轴上手动采集的参考点*)
IF RE (Po man)
THEN SET(Axis ch0.Set rp);
END IF;
IF NOT Po man
THEN RESET (Axis_ch0.Set_rp);
END IF;
!(*运动部件沿着 X 轴正向运动*)
Jog p := Front;
!(*运动部件沿着 X 轴负向运动*)
Jog m := Back;
%L200:IF selection x y
THEN JUMP %L300;
END IF:
!(*在Y轴上手动采集的参考点*)
IF RE (Po man)
THEN SET(Axis_ch1.Set_rp);
END IF;
IF NOT Po man
THEN RESET(Axis_ch1.Set_rp);
```

```
END_IF;
!(*运动部件沿着Y轴正向运动*)
Axis_ch1. Jog_p := Front;
!(*运动部件沿着Y轴负向运动*)
Axis_ch1. Jog_p := Back;
!(*打开机械爪*)
%L300: IF Auto_man AND Ouv_pince
THEN RESET(Claw);
END_IF;
!(*闭合机械爪*)
IF Auto_man AND Ferm_pince
THEN SET(Claw);
END_IF;
!(*错误确认*)
Axis_ch0.Ack_def := Axis_ch1.Ack_def := Acq_defauts;
%L999:
```

手动模式下切换

使用手动模式

如果希望不首先经过编程阶段就移动运动部件,请使用手动模式。为此,请在连接模式下访问调 试屏幕:

步骤	操作
1	激活 工具 → 配置 命令。
2	选择要打开的 TSX CFY 模块。
3	执行 服务 → 打开模块 命令(或双击要打开的模块)。
4	将显示如下调试屏幕: ● 通道 0 ● 通道 1 ● 一日 配置 1 ● 週道 1 ● 一日 配置 1 ● 一日 四 0 ● 一日 0 ● 一日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● 日 0 ● ● 日 0 ● ● 日 0 ● ● 日 0 ● ● 日 0 ● ● 日 0 ● ● 日 0 ● ● 日 0 ● ● ● 日 0 ● ● ● ● 日 0
	▶ PRef ◎ 脉冲

手动模式下的运动

要在手动模式下移动运动部件,必须执行以下操作:

步骤	操作
1	使用 AP → 运行 命令或单击 图标使 PLC 进入运行模式
	RUN
2	选择要驱动的轴:通道 0(X 轴)或通道 1(Y 轴)。
3	将开关旋转到 手动 以选择手动模式。
4	单击 轴 框中的 确认 按钮,以确认速度控制器的安全继电器。
5	单击 错误 框中的 确认 按钮确认错误。
6	 获取手动原点: 选择手动参考点命令, 或者选择强制参考点命令。在这种情况下,首先在参数字段中输入运动部件相对于原点的位置值。
7	移动运动部件: ● 使用 JOG+ 命令进行正向运动, ● 或者使用 JOG- 命令进行负向运动。
	在 运动/速度 框中,运动部件的位置显示在 X 字段中,而速度显示在 F 字段中。

调试

调试过程

用户可以按以下方式调试程序:

步骤	操作
1	使 PLC 进入运行模式。
2	显示 TSX CFY 模块的调试屏幕。
3	同时显示 Grafcet 屏幕以跟随顺序处理的变化情况。
4	按面板上的 Start_cycle 按钮启动程序。

第II部分 TSX CFY 轴控模块

本部分主旨

本部分介绍了 TSX CFY 步进轴命令模块及其功能与安装。

本部分包含了哪些内容?

本部分包括以下各章:

章	章节标题	页
5	安装	59
6	TSX CFY 的特性和维护	83
7	步进轴控的编程	91
8	配置步进轴控	135
9	调整步进轴控	159
10	调试步进轴控程序	173
11	操作	189
12	诊断和维护	191
13	补充功能	197
14	特性和性能	201
15	应用程序专用的步进轴控语言对象	203

第5章 安装

本章主题

本章介绍如何安装步进轴命令模块。

本章包含了哪些内容?

本章包含了以下部分:

节	主题	页
5.1	一般信息	60
5.2	译码器信号的连接	64
5.3	连接传感器/预执行器和电源模块	70

第5.1节 一般信息

本节主题

本节介绍安装 TSX CFY 模块的一般要点。

本节包含了哪些内容?

本节包含了以下主题:

主题	页
必要的基板配置	61
安装过程	62
接线的一般注意事项	63

必要的基板配置

简介

可以将步进式轴控模块安装在 TSX RKY•• 机架上的任一插槽中。必须根据配备的模块数来选择机 架电源。

每工作站的最大 TSX CFY •1 模块数

每个步进控制模块都包含:

- 对于 TSX CFY 11 模块,为 1 个应用专用通道,
- 对于 TSX CFY 21 模块,为 2 个应用专用通道。

假定 PLC 工作站所管理的最大应用专用通道数取决于安装的处理器类型,则 PLC 工作站中的最大 TSX CFY •1 模块数将取决于:

- 安装的处理器类型,
- 除步进式应用专用控制通道之外已经在使用中的应用专用通道数。

因此,必须在 PLC 工作站级别上进行全局评估,找出已经在使用中的应用专用通道数,以便定义可以使用的 TSX CFY •1 模块数。

支持的"应用专用"通道的数量:

- Premium (参见 使用 EcoStruxure™ Control Expert 的 Premium 和 Atrium, 处理器、机架和电源 模块, 实施手册)
- Atrium (参见 使用 EcoStruxure ™ Control Expert 的 Premium 和 Atrium, 处理器、机架和电源模块, 实施手册)

安装过程

概要

模块可以在不切断机架电源的情况下进行安装或拆除,从而可以确保设备的可用性。

模块固定螺钉和连接器必须旋入到位,这样可确保有效地抵抗静电和电磁的干扰。

接线的一般注意事项

一般信息

传感器和执行器的电源需要快速熔断器,以避免过载或过电压。

- 接线时,请使用足够粗的电线以避免线路中的电压降和过热,
- 请将传感器和执行器电缆远离任何高压电路的通断产生的干扰源,
- 必须为所有连接译码器的电缆加上屏蔽,屏蔽必须效果优良,而且要与模块和译码器的保护性 地线相连接。必须确保连接过程的连续性。请勿在电缆中传送除译码器信号之外的其他信号。

出于性能考虑,模块的辅助输入的响应时间很短暂。因此,必须确保这些输入具备足够的自给电 源,这样,即使发生短暂的断电现象也能确保模块继续正常运行。建议使用已校准的电源,以确 保执行器和传感器的响应时间更加可靠。必须将 0 V 电源与离电源模块输出最近的保护性地线相 连接。

第5.2节 译码器信号的连接

本节主题

本节介绍如何连接译码器信号。

本节包含了哪些内容?

本节包含了以下主题:

主题	页
信号标记	65
通过 RS 422/485 接口与译码器连接	67
通过 NPN 开路集极接口与译码器连接	68
TSX TAP S15xx 接线附件概述	69

信号标记

原理图

本图显示了标记的原理:

安装

描述

每个模块输出信号为均为 RS 485,因此对于每个输出都有一个直接信号 (+)和一个补充信号 (-)。 输出与 TTL 类型的电流提取相兼容。5 V 绝缘电压仅用于为译码器输入和输出供电(如有必要)。 0 V 为输入和输出的公共端。5 V 必须仅用于具有开路集极输出和 TTL 类型输入的译码器(此类译 码器未提供 5 V 绝缘电压)。

示意图:

建议的连接类型为:用焊接到连接器上的方式直接进行接线。TSX CAP S15 (参见第 69 页) 套件 包含 SUB-D 连接器及其保护盖。

通过 RS 422/485 接口与译码器连接

原理图

建议您使用含有 7 对双绞线的屏蔽电缆。每个模块输出信号的 + 和 - 电线必须在同一对双绞线中进 行连接。

本图显示了连接原理:

通过 NPN 开路集极接口与译码器连接

原理图

每个输入/输出信号只使用一根电线。如果译码器不提供 5 V 绝缘电压,请务必使用由模块提供的 5 V 绝缘电压来为接口供电。

本图显示了连接原理:

TSX TAP S15xx 接线附件概述

一般信息

通过 TSX TAP S15•• 接线附件,可以使用专用电缆(由编码器制造商提供)将递增编码器连接到 计数模块:

- TSX TAP S15 05:可以将递增编码器连接到 5 VDC 电源:具有 RS 422 输出的编码器,
- TSX TAP S15 24:可以将递增编码器连接到 24 VDC 电源:具有图腾柱输出或开路集极 PNP 输出的编码器

TSX TAP S15•• 具有两个连接器:

- 凹型 12 针 DIN 基板,逆时针方向标出。通过此连接器,可以使用由编码器制造商提供的电缆 连接编码器,
- 标准 15 针 SUB-D 连接器,通过它可以使用标准 TSX CCP S15 电缆将模块计数输入连接到 SUB-D 连接器。

TSX TAP S15•• 产品可以使用随附件提供的支架固定到 DIN 轨上,或者可以使用一个随产品提供 的垫圈固定到机柜的引入端。

示意图:

带有 DIN 12 针连接器的递增编码器

第5.3节

连接传感器/预执行器和电源模块

本节主题

本节介绍了如何连接传感器/预执行器和电源模块。

本节包含了哪些内容?

本节包含了以下主题:

主题	页
信号标记	71
连接	72
将辅助输入和输出与处理器连接。	73
连接 I/O 通道 0 的原理	74
使用 TSX CDP 301 / 501 预接线线束连接	76
与 TELEFAST 预接线系统的连接	77
TELEFAST 上信号的可用性	78
TELEFAST 端子与 HE10 连接器之间的对应关系	
接线注意事项	

信号标记

原理图

下图说明了标记信号的原理:

传感器/预执行器的 0 V 应在模块中通过 R/C 网络(其值如下)连接到保护性地线:R = 100 兆欧 / C = 4.7 nF。

安装

连接

一般信息

连接 TSX CFY 11 / 21 模块的传感器/预执行器的方法有多种。可以直接通过 TSX CDP 301 / 501 (参见 使用 EcoStruxure [™] Control Expert 的 Premium 和 Atrium, 用于伺服电机的轴控模块, 用户 手册) 端子条或离散量 TELEFAST 预接线系统连接它们。
将辅助输入和输出与处理器连接。

一般信息

为了确保最佳操作,应使事件和参考点输入的抗干扰能力较弱。建议使用不跳动的触点(如接近 传感器)。

连接 I/O 通道 0 的原理

原理图

本图显示了连接 I/O 通道 0 的原理:

描述

紧急停止或终点限位开关触点处于断开状态。

终点限位开关触点不是那些必须与紧急输入串联连接的触点。终点限位开关触点用于通过减速来 控制运动的停止。终点限位开关 (ELS+) 会使正向运动停止,而终点限位开关 (ELS-) 会使负向运 动停止。因此,在轴端正确地放置它们非常重要(请参见下图)。

示意图:

使用 TSX CDP 301 / 501 预接线线束连接

一般信息

使用预接线线束可以直接连接执行器、预执行器或任何终端系统。该电缆由 20 根 22 号线组成 (0.34 平方毫米),且一端为连接器,另一端为空闲线,并用颜色代码加以区分。

示意图

本图显示了颜色代码:

电缆:长度: TSX CDP 301 (3 米) TSX CDP 501 (5 米)

HE	10		1 A	会≠占Ω於	1
			10000000000000000000000000000000000000	<u> </u>	
$ \bigcirc $	(2)-		x 色	_ <u></u> 紧急停止	
പ്ര	6	黄	色	<u>外</u> 部停止	
မြ	9		灭色	<u>限</u> 位 +	
	ര	₩	}色	<u>限</u> 位 -	
<u> </u>	<u> </u>		色	<u>参</u> 考点凸轮	Ĩ
b	ര	<u> </u>	[色	<u>事</u> 件	
	•	采	【 色	紧急停止	演演 4
പ്ര	<u>m</u> –	<u>لا</u>	长色	<u>外</u> 部停止	西周日
<u>ا</u> س	•	<i></i>	〒色 - 粉色	<u>限</u> 位 +	
١ <u> </u>	æ-	<u> </u>	[色 - 蓝色	<u>限</u> 位 -	
	9	É	1色 - 绿色	<u>制</u> 动 Q0 - 通道 0	
6	<u>_</u>		彩色 - 绿色	NC	
		É	1色 - 黄色	制动 Q0 - 通道 1	
	60-	黄	t色 - 棕色	NC	
∣≝		É	1色 - 灰色	24 V	
Ь.	(B-		ē - 棕色	<u>o V</u>	
	•	É	1色 - 粉色	<u>24</u> V	
6	<u>_</u>		9色 - 棕色	<u>0 V</u>	
	9				

76

与 TELEFAST 预接线系统的连接

原理图

本连接使用 TELEFAST 2 基板进行: ABE-7H16R20。

NC:常闭。

TELEFAST 上信号的可用性

示意图

本图显示了 TELEFAST 上信号的可用性:

(1) 在 ABE-7H16R20 基板上,跳线的位置决定从 200 到 215 的所有端子的极性:

● 跳线在位置 1 或 2 : 端子 200 到 215 为 + 极性,

• 跳线在位置 3 或 4 : 端子 200 到 215 为 - 极性,

(2) 在 ABE-7H16R20 基板上,可以添加一个 ABE-7BV20 可选条以创建另一个共享传感器(+ 或 -,具体取决于用户的选择)。

TELEFAST 端子与 HE10 连接器之间的对应关系

一般信息

本表显示了 TELEFAST 端子与模块的 HE10 连接器之间的对应关系:

TELEFAST 螺钉端子块 (端子编号)	20 针 HE10 连接器 (引脚号)	信号属性	
100	1	I0 凸轮参考点	通道 0
101	2	I3 事件	
102	3	I1 紧急停止	
103	4	I4 外部停止	
104	5	I2 限位	
105	6	15 限位	
106	7	I0 凸轮参考点	通道 1
107	8	l3 事件	
108	9	I1 紧急停止	
109	10	I4 外部停止	
110	11	I2 限位 +	
111	12	I5 限位 -	
112	13	Q0 制动输出	通道 0
113	14	NC	
114	15	Q0 制动输出	通道 1
115	16	nc (1)	

TELEFAST 螺钉端子块 (端子编号)	20 针 HE10 连接器 (引脚号)	信号属性
+24 VDC	17	辅助输入传感器电源
- 0 VDC	18	
+ 24 VDC	19	
- 0 VDC	20	
1		端子 200 至 215 的电压为 + 24 VDC
2		
3		端子 200 至 215 的电压为 - 0 VDC
4		
200215		将共享传感器连接到: ● +24 VDC(如果连接了端子 1 和 2), ● -0 VDC(如果连接了端子 3 和 4)
300315		在 ABE-7BV20 条(可选)上,可以用作共享传感 器的端子必须通过电线连接到共享电压上。

(1) nc = 未连接

对于 TSX CFY 11 模块,不连接与通道相对应的信号。

接线注意事项

一般信息

为了确保实现最佳性能,输入 I0 到 I5 必须是快速输入。如果执行器为干触点,应使用双绞线连接 输入;如果传感器为 2 线制或 3 线制接近探测器,则使用屏蔽电缆连接输入。

该模块包括标准的防短路或电压反转的基本保护机制。但是,该模块不能在出现错误的情况下继 续长时间运行。因此,必须确保与电源串联的熔断器能够执行它们的保护功能。这些都是电流为 1A 的最大速断熔断器,因此电能必须足以保证它们熔断。

重要注意事项:Q0静态输出的接线

连接到 Q0 制动输出的执行器的共享引脚与电源 0 V 连接。在任何情况下,如果输出放大器电源的 0 V 出现断电(如接触不良或意外掉电),则当执行器的 0 V 仍然与 0 V 电源保持连接时,会有足 以触发低功率执行器的电流从该放大器输出。

示意图:

通过 TELEFAST 连接

如果共享执行器连接到共享点 200 到 215 的接线条(位置 1-2 的跳线),则只要共享执行器不断 电,共享模块就不会断电。

使用 TSX CDP 301 / 501 预接线线束连接

进行这种连接时必须特别小心谨慎。建议接线这种电缆时要格外小心,例如在螺钉端子上使用压 线排。还可以进行双重连接以确保形成可靠的触点。如果执行器电源距离模块很远而距离共享执 行器很近,则可能会导致后者与模块的 0 V 端子之间的链接意外断开。

示意图:

TSX CFY 11/21

如果电源中断发生在 A 点和 B 点之间,则可能使 RL 执行器无法正常运行。如果可能,应尽量将 0 V 电源双重连接到模块。

使用 TSX CDP 301 / 501 预接线线束连接

TSX CFY 11/21

第6章 TSX CFY 的特性和维护

本部分主旨

本部分介绍 TSX CFY 模块的各种电气特性,并描述了为确保模块正常运行需要执行的维护操作。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
一般特性	84
译码器输入的特性(SUB-D 连接器)	85
译码器输出的特性(SUB-D 连接器)	86
辅助输入的特性(HE10 连接器)	87
Q0 制动输出的特性	89

一般特性

特性表

本表介绍了 TSX CFY 模块的一般特性:

脉冲的最大频率		187.316 KHz	
内部 5 V 电路的电流消耗	模块	值	
	TSX CFY 11 TSX CFY 21	510 mA 650 mA	
模块上的 24 V 传感器/预执行器在没有传感器/预执行器 电流时所消耗的电流	TSX CFY 11 TSX CFY 21	50 mA 100 mA	
在模块中损耗的功率	TSX CFY 11 TSX CFY 21	3.8 W 5.6 W	
色缘电阻 > 10 兆欧姆(电压为 500 VDC 时)			
I/O"译码器"和保护性接地或 PLC 逻辑之间的电介质刚性	1 mn 时,为 1000 Veff 50 / 60 Hz		
工作温度	0 至 60° C		
储存温度	-25 ° C 到 70° C		
湿度(无冷凝)	5% 到 95%		
工作海拔高度	< 2000 米		

译码器输入的特性(SUB-D 连接器)

8

这些输入具有正逻辑电流提取:

特性

下表显示了译码器输入的特性:

特性	符号	值	单位
标称电流 (Ue = 0 V)	le	4,5	mA
通态电压	Uon	2	V
断态电压	Uoff	3,6	V
步丢失输入的抗干扰能力		15 到 30	微秒
译码器错误输入的抗干扰能力		3 到 10	毫秒

译码器输出的特性(SUB-D 连接器)

特性表

这些输出都是绝缘的 RS 422/485。每个信号有两个补充输出。

特性	值	单位
差分电压输出 R 负载 ≤ 100 欧姆时	+/- 2	V
短路电流	< 150	mA
允许的共享模式电压	≤ 7	V
允许的差分电压	≤ 12	V

辅助输入的特性(HE10 连接器)

示意图

图:

特性

辅助输入的特性表:

电气特性	符号	值	单位
标称电压	Un	24	V
标称电压限制 (含波纹电压)	U1 Utime (1)	19 到 30 34	V
标称电流	In	7	mA
输入阻抗(在 Unom 时)	Re	3,4	千欧姆
开态电压	Uon	≥11	V
电流(在 Uon (11 V) 时)	lon	>6	mA
断态电压	Uoff	<5	V
断态电流	loff	<2	mA
输入抗干扰能力: 凸轮参考点输入和事件 其他输入	ton/toff (2) ton/toff	< 250 3 到 10	微秒 毫秒
IEC 1131 与传感器的兼容性	类型 2		
与2线和3线传感器的兼容性			

电气特性		符号	值	单位
输入类型	电流导通			
逻辑类型		正(漏极)		
预执行器电压检查	电源阈值正常		> 18	V
	电源阈值错误		< 14	V
电源检测时间	电源正常		< 30	毫秒
	电源错误		> 1	毫秒

(1) Utime:每 24 小时允许 1 小时达到最大电压。

(2) 输入:参考点凸轮和事件都是快速输入(响应时间为 < 250 微秒),符合译码器命令输出的最 大频率为 187.316 KHz 这一条件。

Q0 制动输出的特性

示意图

制动输出:

特性

特性表:

电气特性	值	单位
标称电压	24	V
电压限制	19 到 30	V
临时电压	34 (1)	V
标称电流	500	mA
通态最大电压	< 1	V
断态泄漏电流	< 0,3	mA
负载阻抗	80 <zon<1500< td=""><td>Ω</td></zon<1500<>	Ω
30 V 和 34 V 时的最大电流	625	mA
通讯时间	< 250	微秒
电卸载时间	< L/R	秒
最大开关频率 (F<0.6 / (LI ²)	Hz
│与电感式输入的兼谷性 │────────────────────────────────────	任何输入的电阻均小于 15	十欧姆开具有止逻辑
IEC 1131 兼容性	是	
过载和短路保护	通过电流限制器和电路断路	器
监控每个通道的短路	热,信令:每个通道一位	
复位	每个模块一位。	
● 通过应用程序		
● 目动		
防通道过电压保护	输出与 + 24 V 之间的齐纳	(55 V)
防极性颠倒保护	在电源上使用反向二极管	
钨丝灯的功率	8	W
预执行器电压检查	如果电源 > 18(上升), 则正常	V V
	│	
电压检查的反应时间	不正常> 正常 <30 正常> 不正常 >1	毫秒 毫秒

(1) 每操作 24 小时允许有 1 小时达到最大电压。

第7章 步进轴控的编程

本章主题

本章介绍了各种操作模式的编程原理:内容包括主要指令和操作模式。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
步进轴编程的原则	92
操作模式	93
对 SMOVE 功能进行编程(在自动模式下)	94
输入 SMOVE 功能的参数	95
SMOVE 功能参数的描述	96
SMOVE 功能的指令代码	98
使用 SMOVE 功能执行的基本运动的描述	100
SMOVE 指令代码描述	102
使用索引位置(重复运动)的示例	107
运动命令排序	109
延期的 PAUSE 功能	111
馈给保持功能	113
事件处理	115
管理操作模式	116
管理故障	117
外部硬件故障的描述	120
应用故障描述	122
命令被拒绝故障的描述	123
管理手动模式	124
可视运动命令	126
增量运动命令	128
参考点命令	129
强制参考点命令	130
管理直接模式 (DIRDRIVE)	131
管理停止模式 (OFF)	133

步进轴编程的原则

简介

对轴控模块的每个通道(轴)进行编程均使用:

- 自动模式下用于运动的 SMOVE 功能。
- 与该模块关联的位对象(%I和%Q)和字(%IW、%QW和%MW)(请参见应用程序专用的 步进轴控语言对象,第203页),使用这些对象可以定义:
 - 操作模式的选择,
 - 除自动模式外的运动控制,
 - 轴和模块的工作状态的监控。

位对象和字

可使用位对象和字的地址或符号来检索它们。这些符号在变量编辑器中进行定义,该编辑器为每 个对象提供了缺省的符号名。

操作模式

概览

可以在以下四种操作模式下使用每个轴控通道:

操作模式	描述
自动 (AUTO)	此模式支持执行由 SMOVE 功能驱动的运动命令。
手动 (MANU)	此模式支持从前面板或操作员对话桌面直观地驱动运动部件。命令是通过输出位 %Q 启用的。
直接 (DIRDRIVE)	在此模式下,输出就像一个离散量/频率转换器。此模式根据在变量 PARAM 中指 示的运动设定点来控制运动。
停止 (OFF)	在此模式下,通道不监控运动部件;它仅报告当前位置和速度。 如果配置了轴且无错误,则在启动时强制此模式。

选择模式

模式是通过字 MOD_SELECT (%QWr.m.c.0) 来选择的

下表根据字 MOD_SELECT 的值来指示选定模式:

值	所选模式	描述
0	OFF	切换为已停止的运动
1	DIRDRIVE	命令其在直接模式下运动。
2	MANU	命令其在手动模式下运动。
3	AUTO	命令其在自动模式下运动。

对于 MOD_SELECT 的任何其他值,都会选择 OFF 模式。

在运动期间更改模式

在运动的同时更改操作模式(DONE 位设置为 1:%lr.m.c.1)会导致运动部件停止。当运动部件 被停止(NO_MOTION 位设置为 1:%lr.m.c.7)时,则会激活新的操作模式。

注意: 仅检查与当前模式有关的命令。忽略其他命令:例如,手动模式下的通道(IN_MANU 设置为 1:%Ir.m.c.18),如果激活 DIRDRV (%Qr.m.c.0) 命令,则忽略它。需要首先更改为 DIRDRIVE 模式。

对 SMOVE 功能进行编程(在自动模式下)

概览

您可以使用梯形图语言(通过操作块)、指令列表语言(在方括号之间)或结构化文本语言,在 任何编程模块中编写 SMOVE 功能。在所有情况下,语法都是相同的。

辅助输入屏幕

您可以输入 SMOVE 功能,或者通过输入帮助屏幕使用:

🚯 功能输入助手					X
FFB 类型:				•	
实例:				•	
「原型 ―――					_
名称	类型 编	号 注释		输入区	
					-
					+
添加引脚(<u>P</u>)	删除引脚(<u>})</u>		类型帮助	
特殊助手]	确定	取	消 帮助	

辅助输入

例如,在 ST 程序的编辑器中,按照以下方式进行:

步骤	操作
1	右键单击要插入 SMOVE 功能的位置,然后选择 FFB 输入助手 。
2	在字段 类型 FFB 中输入 SMOVE。 结果 :SMOVE 功能的输入帮助窗口会自动出现,允许您输入参数或进入详细信息屏幕。
3	按 特殊助手 按钮,然后填写提供的各个字段 (参见第 <i>95</i> 页)。也可以直接在参数输入区域中输 入功能变量。
4	单击 确定 进行确认。此时将显示功能。

简介

运动命令是通过 SMOVE 功能编写的,其语法如下: SMOVE(Ax i s_ch1, N_Run, G9x, G, X, F, M) 通过**详细信息**屏幕,可以在得到帮助的情况下输入每个参数。

SMOVE 功能的详细信息屏幕

SMOVE 功能的详细信息屏幕如下:

输入字段(SMOVE 功能的参数)如下:

参数	描述
Axis_ch1	IODDT 类型的变量,对应于必须在其上执行功能的通道 1。 示例:AXIS_CH1 属于 T_STEPPER_STD 类型
N_Run	运动编号。
G9x	运动类型
G	指令代码。
Х	要到达的位置的坐标。
F	运动部件的运动速度。
М	事件处理,与通道关联的辅助离散量输出。

SMOVE 功能参数的描述

概览

必须输入以下参数才能编写运动功能: SMOVE (Axis_ch1, N_Run, G9_, G, X, F, M)

IODDT

AXIS_CH1 是 IODDT *(参见 EcoStruxure™ Control Expert, 操作模式)* 类型的变量,对应于要在其 上执行功能的轴控模块的通道 1。AXIS_CH1 为 T_STEPPER_STD 类型。

运动编号

N_Run 定义运动编号(介于 0 和 32767 之间)。此编号标识由 SMOVE 功能执行的运动。 在调试模式下,通过此编号您可以知道哪个运动正在进行。

运动类型。

G9_ 定义运动类型。

代码	运动类型。
90	绝对 运动。
91	相对于当前位置 的运动。
98	相对于存储的 PREF1 位置 的运动。存储 PREF1 位置是使用指令代码 G07 完成的。

要选择运动类型,请使用 G9_ 字段右侧的浏览按钮,或者在直接输入时直接输入代码(无需转到 详细信息屏幕)。

指令代码

G 定义 SMOVE 功能的指令代码 (参见第 98 页)

要到达的位置坐标

X 定义要到达的位置或运动部件必须向其移动的(在连续运动的情况下)位置的坐标。此位置可 以是:

立即,

● 用内部双字 %MDi 或内部常量 %KDi(可以将此字编入索引)进行编码。

此值以配置参数长度单位定义的单位(例如微米)表示。

注意: 对于指令 G14、G21 和 G62, 此参数表示参考点的值。

运动部件的运动速度

F 定义运动部件的运动速度。此速度可以是:

- 立即,
- 用内部双字 %MDi 或内部常量 %KDi(可以将此字编入索引)进行编码。

速度单位为 Hz。

注意: 速度可以在运动过程中通过 CMV(速度调制系数)进行调制。实际 F = 已编程的 F x CMV/1000。此参数(缺省情况下初始化为 1000)可以介于 [0-2000] 之间,得到的速度必须始终 大于 SS FREQ。值 0 表示运动部件已停止。

参数 M

M 定义用 4 位字节(十六进制)编码的字:

- 激活或停止应用程序事件处理的触发器(适用于指令 G10、G11、G05 和 G07):
 M = 16#1000:激活关联的事件任务,
 - M = 16#0000:在执行 SMOVE 命令时停止事件任务。

例如:

注意: 当您使用**详细信息**屏幕中可用的复选框和单选按钮进行选择时,将在该屏幕的 M 字段中自 动执行编码。

SMOVE 功能的指令代码

简介

G 定义了指令代码。

要选择指令代码,可以使用 G 字段右侧的浏览按钮,然后单击与运动对应的图标或直接输入代码 (无需转到**详细信息**屏幕)。

指令代码列表

可在**详细信息**屏幕中选择的指令代码如下:

指令代码	含义	图标
09	运动到位置,停止。	603
01	连续运动到位置。	601
10	运动到事件,停止。	610 1
11	连续运动到事件。	611 🍟
14	参考点。	614
62	强制参考点。	662 🔶 <mark>0.0</mark>
05	等待事件。	605A
07	在出现事件时存储位置。	607 ¥

"详细信息"屏幕图形

详细信息屏幕还显示代表所选运动的图形。 例如,代码 G09:

使用 SMOVE 功能执行的基本运动的描述

概览

SMOVE 功能的某些指令可用于执行基本运动。

在对这些运动进行编程时,用户可以定义要到达的位置和要达到的速度。加速参数(常量、速度 梯形曲线)便是通过这个可调整参数进行定义的。

运动可以是:

- 相对于机器原点的绝对运动 90
- 相对于当前位置的相对运动 91
- 相对于存储位置 PREF 的相对运动 98

相对于机器原点的绝对运动

相对于机器原点的绝对运动 (90) 的示例。

相对于当前位置的相对运动

相对于当前位置的相对运动 (91) 的示例。

相对于存储位置的相对运动

相对于存储位置 PREF 的相对运动 (98) 的示例。

SMOVE 指令代码描述

概览

可以对以下三类运动进行编程:

- 运动到某个位置(指令代码 01 和 09)
- 运动到检测到某个事件为止(指令代码 11 和 10)
- 参考点(指令 14)

要了解有关指令的执行条件的信息,请参见 诊断和维护,第 191页.

连续运动到某个位置

连续运动到某个位置的示例:指令代码 01。

注意:如果指令 01 没有后跟任何运动指令,则运动部件将继续运动,直至到达软停止为止(在经 过要到达的位置后,将不再解释 CMV(速度调制系数))。

运动到某个位置停止

运动到某个位置停止的示例:指令代码 09。

连续运动到发生某个事件为止

连续运动到发生某个事件为止的示例:指令代码 11。

注意:事件可以是专用事件凸轮输入的上升沿或下降沿,也可以是程序导致的 EXT_EVT 位 (%Qr.m.c.11) 的上升沿。 定义位置参数是很重要的。如果未检测到事件,则在到达请求的目标位置时终止指令。 如果 M 等于 16#1000,则在检测到事件时,指令 11 和 12 可以激活事件任务。

运动到发生某个事件为止

运动到发生某个事件为止的示例:指令代码 10。

参考点(R)

设置参考点的示例:指令代码 14。 参考点配置为沿正向朝向短凸轮。开始时,运动部件离开凸 轮。

注意:此指令根据在配置中进行的选择来触发参考点序列。检测到参考点时,在 X 参数中提供的 值对应于要与当前值一起加载的坐标。 设置参考点的示例:指令代码 14。参考点配置为沿正向朝向长凸轮。开始时,运动部件向着凸轮 运动。

示例:SMOVE (Axis ch0,1,90,14,5000000,2000,0)

注意: 仅当运动部件处于静止状态时,才接受此命令: NO_MOTION 位 = 1 (%Ir.m.c.7)。

强制参考点

此命令执行强制参考点(无需移动部件),指令代码是 62。参考点的当前值被强制为位置参数 X 中输入的值。

示例:SMOVE (Axis_ch0, 1, 90, 62, 100000, 100, 0)。

执行此指令时,运动部件的位置被强制为 100000。

注意: 不管轴的状态如何(是否被参考),都会接受此命令,而且在完成执行时,此命令具有参 考轴的操作。仅当运动部件处于静止状态时,才接受此命令:NO_MOTION 位 = 1 (%Ir.m.c.7)。

等待事件

此命令(指令代码 05) 使通道等待事件,事件可以是:

- 反射输入状态的改变(根据在配置中进行的选择,为上升沿或下降沿),
- EVT_EXT 位的上升沿 (%Qr.m.c.11)

在此指令的上下文中,F 参数指定精度为 10 毫秒的时间范围。如果在时间范围结束时未触发事件,则禁用该命令。如果 F = 0,则无限期地继续等待。

示例:SMOVE (Axis_ch0, 1, 90, 05, 500, 100, 0)。

可以关联事件处理 (参见第 115页),为此您必须将 M 编写为 16#1000。

注意:执行此指令时,T_SPEED 对象 (%MDr.m.c.10) 不包含表示等待时间的参数 F。另一方面, 建议将事件进程与此命令系统化地关联起来,因为仅当激活此进程时,才刷新位 TO_G05 (%lr.m.c.39)(它允许应用程序通过检测事件或时间范围的超时来区分命令是否已终止)。

发生事件时存储当前位置。

执行此指令(代码 07)之后,在输入触发器输入时会产生在配置中定义的事件,并将当前位置存储在 PREF 寄存器中。

注意: 位置 X 的参数必须等于 1。

示例:SMOVE (Axis_ch0,1,90,07,1,0,0)。

发生事件时存储当前位置的描述表。

注意:此指令不会阻塞,程序立即执行下一个指令。仅当请求激活事件处理时 (M=16#10000),才可以在 PREF 寄存器 (%IWr.m.c.7) 中访问当前位置的存储值。

注意:执行此指令时,对象 T_XPOS (%MDr.m.c.8) 不包含参数 X=1。

编程

使用索引位置(重复运动)的示例

概览

我们希望执行以下基本运动序列9次:

- 运动 A, 直至检测到部件 1 的边缘,
- 运动 B, 远至位置 2 = +20000(相对于部件 1 的边缘),
- 运动 C, 远至位置 3 = +10000(相对于部件 1 的边缘),
- 运动 D,远至部件 1 的边缘。

在此示例中,假定采用了参考点,而且运动部件位于参考点处。我们使用 IODDT 类型的变量 AXIS_CH0,它与要在其上应用功能的轴命令模块的通道 0 关联。AXIS_CH0 属于 T_STEPPER_STD 类 型。

示意图

位置图。

注意:基本运动序列在曲线上以粗体表示。所标数字对应于在SMOVE功能中包括的程序步编号。

程序描述

用于操作重复运动的 Grafcet。

注意: 所有动作都必须在激活时进行编程。
运动命令排序

创建轨道

创建轨道是通过编写一系列基本运动指令(SMOVE 功能)完成的。此功能适用于 IODDT 类型的 变量 T_STEPPER_STD。在给出的示例中,我们声明类型为 T_STEPPER_STD 的 AXIS_0 变量。 用于执行 SMOVE 功能的每个基本命令只能完成一次。您必须以下列方式之一执行程序:

- 在 Grafcet 中: 在为激活或停止而编写的步中.
- 在结构化文本或梯形图语言中,在一位上升沿中。

有关该功能执行情况的报告由模块通过位 NEXT 和 DONE 提供。

存储器缓冲区

TSX CFY 模块具有一种支持对运动命令排序的机制。

TSX CFY 模块的每个轴都包括一个允许它接收 2 个运动命令(除了它正在执行的运动命令外)的 存储器缓冲区。因此,完成当前命令的执行后,它可以立即继续执行缓存中存在的第一个命令。 命令排序:

在2个命令之间排序

2个运动命令之间的排序是按以下方式进行的:

- 如果第一个运动是连续的,则排序是瞬时完成的,
- 如果第一个运动具有停止,则排序在运动部件停止后立即进行。

要使排序是瞬时的,正在执行的指令的执行时间必须大于主任务的周期。

注意: 仅当与要控制的轴关联的存储器缓冲区未满时,才能将新命令传输到模块。

与排序机制关联的位

与排序机制关联的位如下:

寻址	描述
NEXT (%lr.m.c.0)	向程序用户指示模块准备好接收下一个运动命令。
DONE (%lr.m.c.1)	指示当前命令的执行已结束,而且存储器缓冲区中缺少新命令。
AT_PNT (%lr.m.c.8)	指示运动部件已到达目标点: ● 对于连续运动,仍然为 0, ● 对于具有停止的运动,等效于 NO_MOTION。

注意:在执行 SMOVE 命令之前,程序必须始终测试 NEXT 位或 DONE 位。

示例

下图表示序列的时序图:

对于具有停止的运动:当 NO_MOTION (%Ir.m.c.7) 切换为 1 且存储器缓冲区可用时,DONE 切换 为 1。

对于连续运动:当超过目标位置且缓冲区存储器为空时,DONE 切换为 1。

延期的 PAUSE 功能

概览

使用命令 PAUSE (%Qr.m.c.12),可以挂起运动序列。仅当运动部件停止时(即在 G09 或 G10 指 令的结尾),该命令才变为活动状态。

在 PAUSE 命令复位为 0 后,下一个运动会立即启动。

ON_PAUSE 位 (%Ir.m.c.26) 在被设置为 1 时指示轴处于 PAUSE 状态。

此功能具有两种可能的用途:

- 逐块执行运动程序,
- 由同一步进式轴控模块同步轴。

逐块执行运动程序

如果正在执行的指令包含停止,则在调试屏幕中以自动模式激活 **PAUSE** 命令或者将 PAUSE 位 (%Qr.m.c.12) 设置为 1 时,会导致在执行该指令后切换到待机模式:这将停止运动排序。 因此,可以通过依次激活和禁用 PAUSE 命令来逐块执行运动,以便于进行调试。

几个轴的同步

对于每个轴,如果程序将 PAUSE 位 (%Qr.m.c.12) 设置为 1,则导致在执行该指令后切换到待机 模式。

当 PAUSE 位复位为 0 时,模块将继续执行指令。

编程

示例

当运动部件 0 到达位置 100000 时,停止执行运动部件 1 的运动。当运动部件 0 到达尺寸 500000 时,将再次激活运动。我们将类型为 T_STEPPER_STD 的 AX IS_0 用作与通道关联的 IODDT 变量

IF (AXIS 0.POS >= 100000) THEN SET AXIS 0.PAUSE;

IF (AXIS_0.POS >= 500000) THEN RESET AXIS_0.PAUSE;

馈给保持功能

概览

在自动模式下,使用此功能可以使运动部件停止,并在命令重新启动运动时,确保继续沿着程序 设定的轨道(没有命令被拒绝的风险)。

激活该功能

通过将值 0 赋予 CMV (速度调制系数)字 (%QWr.m.c.1),可以激活"馈给保持"功能。 它使运动部件按照程序设定的减速度停止。 有关暂停的状态报告由 IM_PAUSE 位 (%Ir.m.c.27) 指示。

禁用该功能

通过将初始值 (> 0) 重新赋予 CMV (速度调制系数)字,可以禁用"馈给保持"功能。 它使中断的运动按以下对应速度重新启动:

F x CMV / 1000。

示例

编程

"馈给保持"的激活/禁用功能应用于位于标准机架插槽 2 中的模块的通道 0(已将 T_STEPPER_STD 类型的变量 Axis_0 添加到该模块):

SMOVE {Axis_0,1,90,10,5000000,1000,0}; SMOVE {Axis_0,2,90,09,7500000,500,0}; IF RE %M10 THEN %MW100 := Axis_0.SMC; Axis_0.SMC := 0; IF RE %M10 THEN Axis_0.SMC := %MW100;

注意: 在出现 STOP 命令或阻塞错误时,禁用此命令。

注意: 超过目标位置时,如果在"馈给保持"命令后存在停止,则认为正在进行的运动已终止。在 这种情况下,轨道与存储器缓冲区中处于待机状态的运动一起重新启动。

事件处理

概览

TSX CFY 模块的通道可以激活事件任务。为此,您必须已启用配置屏幕中的功能,方法是使事件 处理编号与通道 (参见第 149页)关联。

激活事件任务

下面的指令可触发激活事件任务的事件的发送:

- 一直运动,直到发生事件,代码为 10 和 11:检测到事件时,激活事件处理应用程序。
- 等待事件,代码为05:在指令的结尾激活事件处理应用程序。

● 在事件出现时存储当前位置,代码为 07:在存储 PREF 位置结束时,激活事件处理应用程序。 如果将与指令关联的 SMOVE 功能的 M 参数中的位 12 设置为 1(M 等于 16#1000),则激活事件 处理应用程序。

可以由事件任务使用的变量

- 如果选择了几个事件源,则通过下面的位可以确定是什么导致触发事件处理应用程序:
 O EVT_G1X (%Ir.m.c.40):发生事件时结束 G10 或 G11,
 - EVT_G05 (%Ir.m.c.38):发生事件时结束 G05,
 - TO_G05 (%Ir.m.c.39): G05 定时时间已过,
 - EVT_G07 (%lr.m.c.37):存储位置,
- 通过 OVR_EVT 位 (%Ir.m.c.36),可以检测事件的发送是否有延迟或事件是否丢失。
- 存储位置 PREF (%IWr.m.c.7) 的值。

注意: 上面所述的位和字是在事件任务中刷新的全部值,并仅在激活任务时更新到 PLC 中。

屏蔽事件

编程语言提供了两种屏蔽事件的方法:

- 用于全局屏蔽事件的指令:MASKEVT()(指令 UNMASKEVT() 用于取消屏蔽)。
- ACTIVEVT 位 = 0 (%S38), 全局禁用事件。ACTIVEVT 位通常设置为 1。

摘要图:

管理操作模式

为模块加电

为模块加电或插入模块时,TSX CFY 模块将执行自动测试,且输出处于安全位置(输出在 0 处)。

自动测试结束时:

如果自动测试	则模块
未检测到任何错误。	在输出处于安全位置的情况下测试配置。如果配置是正确的, 则模块切换到禁用模式 (OFF)。
检测到错误或配置不正确。	发出错误信号,并将输出保留在安全位置。

PLC 处于"运行"模式

已配置通道的所有操作模式都是可用的。

将 PLC 从运行模式切换到停止模式

将 PLC 从运行模式切换到停止模式时,或者在处理器与模块之间失去通讯时,运动部件将减速并 停止,且模块切换到停止模式 (OFF)。

注意:通过 IRSTSCANRUN 位 (%S13) 可以检测 PLC 切换到停止模式的时间。在 PLC 切换到运 行模式后,在第一循环中将该位设置为 1。

更改配置(重新配置)

- 运动部件减速并停止。
- 通道变成未配置的。
- 通道在输出处于安全位置的情况下测试新配置。
- 如果新配置是正确的,则通道切换到停止模式 (OFF)。
- 如果配置不正确,则模块发出错误信号,并将输出保留在安全位置。

断电和来电

断电时,运动部件停止。

冷启动或热重启时,处理器会将通道的配置自动传输到模块。后者切换到停止模式 (OFF)。

管理故障

概览

由于运动部件存在固有的风险,因此必须在位置控制区域中监控故障。 检查是由模块在内部自动执行的。

故障类型

模块检测以下四种类型的故障:

- 模块故障。这些是模块内部的硬件故障。因此,由模块驱动的所有轴都受此类型故障的影响。
 在自动测试(重新初始化模块时)或正常操作(I/O 故障)过程中,可以检测到这些故障。
- 模块外部的硬件通道故障(例如,制动输出短路)。
- 与轴有关的应用程序通道故障(例如,超过软停止)。
 在配置轴时,轴级别的故障监控永久处于活动状态。
- 命令被拒绝通道故障。这些是在执行运动、传输配置、传输调试参数或更改操作模式命令时可 能出现的故障。

注意: 轴控参数可以启用或禁用一些轴级别故障的监控。可以在调整屏幕中调整这些控制参数。 在停止模式 (OFF) 下,禁用应用程序故障的监控

严重级别

故障的严重级别有两种:

- 紧急故障或阻塞故,导致一个运动部件(在出现轴故障时)或由模块管理的多个运动部件(在 出现模块故障时)停止。它们会导致以下过程:
 - 发出故障信号,
 - 使运动部件减速,直到它停止为止,
 - 禁用译码器,激活制动,
 - 清除存储的所有命令,
 - o 等待确认。

故障必须消失且得到确认,才能重新启动应用程序。

● **非严重故障**,导致发出故障信号,但不停止运动部件。必须在 Control Expert 中通过编程设置 对此类型的故障所采取的操作。

在故障消失且得到确认后,故障消息将消失(不存储确认,且确认仅在故障消失后才有效)。

注意:如果打开紧急停止输入,或禁用译码器 ENABLE = 0(%Qr.m.c.10),则不执行减速阶段,而 是立即停止。但是,出现的步故障信息不会被视为阻塞故障,而只是向应用程序发送信息。

对故障编程

可以从调试屏幕显示、修复和确认故障,但是,如果能够从控制台驱动运动部件和修复故障,则 在操作时可能是很有用的。为此,应用程序具有所有的必要信息和命令。

指示故障

模块以状态位和字的形式提供了许多信息,可以通过 Control Expert 程序访问这些信息。通过这些 位可以按分层方式处理故障:

- 作用于主程序,
- 仅发出故障信号。

信号级别

提供了两种信号级别:

第一级:一般信息

位	故障
MOD_ERROR (%Ir.m.c.ERR)	通道故障
AX_OK (%lr.m.c.3)	检测到非阻塞故障(运动部件停止)
AX_FLT (%lr.m.c.2)	故障(将所有故障组合在一起)
HD_ERR (%lr.m.c.4)	外部硬件故障
AX_ERR (%lr.m.c.5)	应用故障
CMD_NOK (%Ir.m.c.6)	命令被拒绝

第二级:详细信息

模块故障和轴故障的状态字 CH_FLT(%MWr.m.c.2) 和 AX_STS(%MWr.m.c.3)。这些字是通过在 语言对象 (参见第 *203* 页)中所述的显式交换请求获得的。

注意:遇到阻塞故障时,建议您停止进行与轴关联的顺序处理,并通过在手动模式下驱动运动部 件来修复故障。故障修正后,必须确认该故障。

故障确认

出现某个故障时:

- 故障位 AX FLT、HD ERR、AX ERR 和状态字中与故障有关的抽取位均设置为 1。
- 如果故障是阻塞故障,则 AX_OK 位设置为 0。

故障消失时,所有故障位都保留其状态。在获得确认之前一直存储故障,存储方法是将 ACK_FLT 位 (%Qr.m.c.9) 设置为 1(或者重新初始化模块)。在故障消失后必须进行确认(软停止故障除 外)

如果检测到几个故障,则确认命令仅对实际消失的故障起作用。对于仍然存在的故障,必须在其 消失后再次确认。

注意: 故障的确认也可以在初始化 PLC 时进行,或者在接受正确的新命令(在出现命令被拒绝故 障的情况下)时进行。

不同类型故障的摘要表

下表汇总了不同类型的故障及其关联位:

通道故障 (MOD_ERROR位: %Ir.m.c.ERR)	进程故障(AX_FLT 位:%lr.m.c.2)			
	AX_OK:%lr.m.c.3(未检测到阻塞错误)		命令被拒绝(CMD_NOK 位:	
	外部硬件(HD_ERR 位:%lr.m.c.4)	应用程序(AX_ERR 位:%lr.m.c.5)	%lr.m.c.6)	
 ● 内部 ● 通讯 ● 配置 ● 配置或调整 	 紧急停止 译码器 24 V 电源 制动输出短路 	● 软停止	在字 CMD_FLT 中编码故障: %MWr.m.c.7	

(*) 这些故障是非阻塞故障,不影响 AX_OK 位。

通道故障描述

MOD_ERROR 位组合通道级别上的所有故障:

- 内部故障 MOD_FLT (%MWr.m.c.2.4):缺少模块、停止工作或正在自动测试。
- 通讯故障 COM_FLT (%MWr.m.c.2.6):处理器的通讯故障。
- 通讯故障 COM_FLT (%MWr.m.c.2.6): 在配置中声明的模块位置和其实际位置之间存在差异。

注意: 字 %MW 需要 READ_STS 命令才能进行更新。

外部硬件故障的描述

概览

这些故障由位 HD_ERR (%lr.m.c.4) 指示。这些故障是阻塞故障,无法停止。

紧急停止

下表显示出现**紧急停止**故障的原因、信号和要采取的补救措施:

原因	在 24 V 与模块前面板上的 紧急停止 输入之间为开路	
参数	无	
结果	强制停止运动部件	
信号	EMG_STOP (%lr.m.c.29) 和 EMG_STP (%MWr.m.c.3.5) 位	
补救措施	重新建立输入和 24 V 之间的连接,然后确认故障。	

24 V 电源

下表显示出现 24 V 电源故障的原因、信号和要采取的补救措施:

原因	24 V 电源故障
参数	无
结果	不对轴设定参考点,强制停止运动部件
信号	AUX_SUP 位 (%MWr.m.c.3.6)
补救措施	重新建立连接,然后确认故障

制动输出短路

下表显示出现**制动输出短路**故障的原因、信号和要采取的补救措施:

原因	在模块的制动输出上检测到短路
参数	无
结果	不对轴设定参考点,强制停止运动部件
信号	BRAKE_FLT 位 (%MWr.m.c.3.1)
补救措施	消除短路,然后确认故障

译码器

下表显示出现译码器故障的原因、信号和要采取的补救措施:

原因	译码器检查输入未收到在通道配置中所定义的该级别 译码器正常 信息
参数	无
结果	不对轴设定参考点,强制停止运动部件
信号	DRV_FLT 位 (%MWr.m.c.3.2)
补救措施	消除译码器故障,然后确认该故障

应用故障描述

概览

这些故障由 AX_ERR 位 (%lr.m.c.5) 指示。可通过配置编辑器调整屏幕来访问参数。

软停止

下表显示出现软停止故障的原因、信号和要采取的补救措施:此故障是阻塞故障,无法禁用。

原因	运动部件不再处于以下 2 个阈值之间:软件下限和软件上限(在对轴设置参考点后,会立 即激活此监控)
参数	软件上限:SL_MAX (%MDr.m.c.14) 软件下限:SL_MIN (%MDr.m.c.16)
结果	强制停止运动部件
信号	SLMAX 位 (%MWr.m.c.3.3):已超出软件上限 SLMIN 位 (%MWr.m.c.3.4):已超出软件下限
补救措施	 确认故障,然后在手动模式下将超过软停止的运动部件移动到有效的测量区域内。为此, 必须检查是否存在以下情形: 没有进行任何运动, 选定了手动模式, STOP 命令已设置为 0, 参考了已执行命令的轴, 轴上的停止没有出现其他故障。
	既可通过手动方式也可通过命令 JOG+ 和 JOG- 使运动部件返回。

命令被拒绝故障的描述

概览

每次无法执行命令时,都会生成"命令被拒绝"故障。此命令与轴的状态或当前模式不兼容,或者 至少一个参数无效。

这些故障由调试屏幕中的指示器**命令被拒绝**指示。通过通道级别上的 **DIAG** 键,可以了解命令被 拒绝的原因。此信息也可以由程序通过 CMD_NOK 位 (%Ir.m.c.6) 和 CMD_FLT 字 (%MWr.m.c.7) (参见第 *219* 页) 进行访问。

命令被拒绝

下表显示出现命令被拒绝故障的原因、信号和要采取的补救措施:

原因	运动命令未经授权 传输的配置或参数不正确
参数	无
结果	立即停止正在进行的运动 将自动模式下接收运动命令的存储器缓冲区复位为 0
信号	CMD_NOK 位 (%Ir.m.c.6):运动命令被拒绝 CMD_FLT 字 (%MWr.m.c.7):检测到的故障类型 ● 最低有效字节:可执行命令, ● 最高有效字节:调整配置和参数。
补救措施	在收到新接受的命令时确认是隐式的 同样可以通过命令 ACK_FLT (%Qr.m.c.9) 进行确认

注意:对于自动模式下的运动排序,我们建议您使用前一运动的执行结束和 AX_FLT 位 (%lr.m.c.2) 设置每个运动的执行条件。这意味着在当前命令遇到"命令被拒绝"故障时,不会将接 下来的命令排入执行序列。

管理手动模式

概览

可以从调试屏幕选择和控制手动模式,也可以通过应用程序,从面板或者操作员或超级用户的对 话桌面进行。

在这种情况下,对话是使用基本命令(运动、参考点等)以梯形图、指令列表或结构化文本语言 编写的。

选择手动模式

此操作是通过将值 2 赋予字 MODE_SEL (%QWr.m.c.0) 完成的。

如果运动正在进行中,则从所用模式到手动模式的切换将强制运动部件停止。运动部件停止后, 手动模式立即生效。

如果已识别切换到手动模式的命令,则将 IN_MANU 位 (%lr.m.c.22) 设置为 1。

执行手动命令

与手动模式关联且可以通过命令位 %Qr.m.c.j 访问的基本命令如下:

- 正向 JOG_P (%Qr.m.c.1) 中的可视运动。
- 负向 JOG M (%Qr.m.c.2) 中的可视运动。
- 正向 INC_P (%Qr.m.c.3) 中的递增运动。
- 负向 INC_M (%Qr.m.c.4) 中的递增运动。
- 手动参考点 SET_RP (%Qr.m.c.5)。
- 强制参考点 RP_HERE (%Qr.m.c.6)。

这些命令与可以从 TSX CFY 模块的调试屏幕访问的那些命令等效。

手动命令:

「命令 (<u>M</u>)	
OJOG - O	OJOG+ O
	O INC +
○ ○ 手动参	考点
○ 强制参	考点
○ 辅助输	н

必须满足以下条件才能在手动模式下执行命令:

- 目标位置没有超过软件限位。
- 轴没有阻塞故障(AX_OK bit = 1:%Ir.m.c.3)。
- 没有执行任何命令(DONE 位 = 1:%lr.m.c.1)。
- STOP 命令 (%Qr.m.c.8) 处于停用状态,而且译码器继电器的确认位 ENABLE (%Qxy.i.10) 设置 为 1。

注意:对于软件限位故障,命令 JOG_P 和 JOG_M 以及在故障确认后除外。

停止运动

运动可能由于以下原因而停止:

- 出现 STOP 命令 (%Qr.m.c.8),或者将 ENABLE 位 (%Qr.m.c.10)或 STOP 输入设置为 0。
- 出现阻塞故障。
- 更改操作模式。
- 接收配置。
- 正向(或负向)运动过程中切换到正(或负)的运行结束限位。

可视运动命令

概览

要执行可视运动,必须使用手动命令 JOG_P 和 JOG_M。

位 JOG_P (%Qr.m.c.1) 和 JOG_M (%Qr.m.c.2) 按正向或负向控制运动部件的运动。操作员必须以 可视方式跟踪运动部件的位置。只要命令存在,且它没有被 STOP 命令或故障禁用,运动就会继 续。

命令 JOG_P 和 JOG_M 在跳变沿上予以考虑且保持活动状态,而不管是否对轴设置了参考点。

运动速度

运动是按手动模式速度 MAN_SPD 执行的,该速度在调整屏幕中(或者在双字 MAN_SPD (%MDr.m.c.20) 中)定义。

该速度可以在运动过程中通过 CMV (速度调制系数) (%QWr.m.c.1) 进行调制。

高于 FMAX(在配置时定义的最高轴速度)的任何运动速度都被限制为 FMAX 值。 运动部件的运动速度:

对 JOG_P 和 JOG_M 命令的说明

- JOG_P 和 JOG_M 命令用于在检测到软件限位故障时释放运动部件。这是在第一次确认故障之 后进行的。
- 如果在切换到手动模式时 JOG_P 或 JOG_M 位设置为 1,则无法识别此命令。仅当该位被清除 再复位为 1(检测到上升沿)时,才会识别此命令。

增量运动命令

概览

要执行递增运动,必须使用手动命令 INC_P 和 INC_M。 位 INC_P (%Qr.m.c.3) 和 INC_M (%Qr.m.c.4) 控制运动,以便按正向或负向递增运动部件的位置。 位置增量 PARAM 的值在双字 PARAM (%QDr.m.c.2) 或 TSX CFY 模块的调试屏幕中输入。 除了手动模式下执行的一般条件外,命令 INC_P 和 INC_M 在上升沿上处于活动状态还要满足以下 条件:

● 轴已被参考。

• 目标位置介于软件限位之间。

运动速度

运动是按手动模式速度执行的,该速度在调整屏幕中或双字 MAN_SPD (%MDr.m.c.20) 中定义。 该速度可以在运动过程中通过 SMC 系数 (%QWr.m.c.1) 进行调制。 高于 FMAX(在配置时定义的最高轴速度)的任何运动速度都被限制为 FMAX 值。 运动部件的运动速度:

参考点命令

概览

使用命令 SET_RP 可以设定参考点。

位 SET_RP (%Qr.m.c.5) 设定运动的手动参考点。

参考点的类型和方向在参考点 (参见第 *150* 页)参数中定义,而且是在配置时定义。源的值在调 整屏幕中由参数"RP 值"或双字 RP_POS 定义:(%MDr.m.c.22)。

接近速度

接近速度等于在调整屏幕或双字 MAN_SPD (%MDr.m.c.20) 中定义的手动速度乘以 CMV(速度调 制系数)。参考点速度随所选参考点类型的不同而不同。

高于 FMAX (在配置时定义的最高轴速度)的任何运动速度都被限制为 FMAX 值。

示例:仅限短凸轮,正向

强制参考点命令

概览

使用命令 RP_HERE 可以设定强制参考点。

位 RP_HERE (%Qr.m.c.6) 按照在 PARAM 参数中定义的值设定未运动的强制参考点。此值在双字 PARAM (%QDr.m.c.2) 中或在 TSX CFY 11/21 模块的调试屏幕中输入。

强制参考点命令用于参考轴而不执行运动。

注意: 命令 RP_HERE 不修改 RP_POS 参数的值。 PARAM 参数的值必须介于软件限位之间。 在执行此命令的过程中,不允许存在阻塞故障。

管理直接模式 (DIRDRIVE)

概览

DIRDRIVE(直接驱动)模式用于仿真轴控而不操作功能部件;并计算返回的所有信息。 因此,可以独立于功能部件来分析轴的行为。

选择直接模式

通过将值1赋予字 MODE_SEL (%QWr.m.c.0.),可以选择直接模式。

在请求更改模式时,会停止运动部件,然后更改模式。如果已识别切换到直接模式的命令,则将 位 IN_DIRDR (%Ir.m.c.17) 设置为 1。

在直接模式下执行命令

直接模式包括运动命令 DIRDRV (%Qr.m.c.0)。

速度设定点由变量 PARAM (%QDr.m.c.2) 定期传输。此变量的符号表明运动方向。

在 SS_FREQ 和 FMAX 之间控制译码器的速度。这些值是在配置屏幕 (FMAX) 和调整屏幕 (SS_FREQ) 中定义的。

位 ST_DIRDR (%Ir.m.c.20) 指示运动正在 DIRDRIVE(直接驱动)模式下进行。

速度规律

更改设定点时,输出将按照与参数化的加速度有关的梯形速度规律达到新的设定点。

执行 DIRDRIVE 命令

执行 DIRDRIVE 命令的一般条件如下:

- 轴上没有阻塞故障,位 AX_OK = : (%Ir.m.c.3)。
- STOP 命令 (%Qr.m.c.8) 处于停用状态,而且译码器继电器的确认位 ENABLE (%Qxy.i.10) 设 置为 1。
- 参数 PARAM (%QDr.m.c.2) 介于选定轴的 FMAX 和 -SS_FREQ 之间或者 SS_FREQ 和 FMAX 之间。

停止运动

运动可能由于以下原因而停止:

- 出现 STOP 命令,或者将译码器继电器的确认位 ENABLE (%Qr.m.c.10) 设置为 0。
- 出现阻塞错误或软件限位错误。
- 更改操作模式。
- 接收配置。
- 正向(或负向)运动过程中切换到正(或负)的运行结束限位。

注意: 在参考轴时,软件限位监控保持活动状态。要禁用此监控,请通过暂时将 ENABLE (%Qr.m.c.10) 设置为 0 来取消轴参考,然后通过将 ENABLE 设置为 1 或者按确认按钮进行确认。

管理停止模式 (OFF)

概览

此模式主要用于从配置编辑器内进行调试。但是,它可以由程序驱动。在此模式下,模块保持被动状态,但继续更新当前位置信息 POS (%IDr.m.c.0) 和当前速度信息 SPEED (%IDr.m.c.2)。

选择停止模式

通过将值 0 赋予字 MODE_SEL (%QWr.m.c.0.),可以选择停止模式。

当 PLC 处于停止模式下时,模块也选择停止模式。在进行通道配置后,缺省情况下选择停止模式。

在停止模式下执行命令

OFF 模式没有关联的运动命令。 不监控运动部件的运动,且禁用软件错误的监控(软件限位监控除外)。 译码器允许命令 ENABLE (%Qr.m.c.10) 继续监控输出。

第8章 配置步进轴控

本章主题

本章介绍了 TSX CFY 模块中的配置屏幕。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
轴控模块配置屏幕的描述	136
访问参数配置屏幕	138
配置用户单位	140
配置译码器的命令模式	142
配置控制参数	144
配置译码器反转	146
配置译码器启用	147
配置步进电机的制动	148
配置事件任务	149
参考点配置	150
验证配置参数	155

轴控模块配置屏幕的描述

一般信息

配置屏幕是一个图形工具,专用于配置 *(参见 EcoStruxure ™ Control Expert, 操作模式)*在机架中 选择的模块。它显示与该模块的通道相关联的参数,并且可以使用它在本地以及在连接模式下修 改这些参数。

通过它,还可以访问调试屏幕和调整屏幕(后者仅限于连接模式下)。

注意: 通过使用 %KW 语言对象直接进行编程来配置模块是不可能的,这些字只能以只读的形式 访问。

示意图

下图是一个配置屏幕。

下表显示了配置屏幕的各个元素及其功能。

地址	元素	功能
1	选项卡	前端的选项卡显示当前模式(此示例中为 配置)。每个模式均可通过相应的选项卡进行选择。可用模式包括: ● 配置 ● 调整
		注 : 住住线模式下,会击现其他远坝下,使用它们可以控制模块以及响试住序。
2	模块 区域	模块缩与标题的简要介绍。
3	通道 区域	用来: ● 通过单击参考号,显示选项卡: ① 描述,提供设备的特性。 ③ I/O 对象 <i>(参见 EcoStruxure ™ Control Expert, 操作模式)</i> ,用来预先用符 号表示输入/输出对象。 ② 故障,显示设备故障(在线模式)。
		● 选择通道, ● 显示 符号 ,即用户使用变量编辑器定义的通道名。
4	常规参数 区域	 使用它可以选择与通道相关联的轴控功能和任务: 功能: 定位。缺省情况下,不配置任何功能。 任务:定义任务(MAST 或 FAST)。在定义的任务中,将交换隐式交换对象或通道。
5	配置区域	使用它可以配置通道参数。该区包括不同的标题,并根据所选功能进行显示。 有些选项可能已禁用,禁用的选项处于灰显状态。 每个参数的限制都会显示在状态栏中。

访问参数配置屏幕

访问模块参数化

要访问模块参数化,请双击它在机架中的图形表示形式,或者:

- 选择该模块(单击它),
- 从编辑菜单激活打开模块命令。

参数化屏幕

通过下面的屏幕,您可以参数化模块:

此屏幕由用于提供信息或选择参数的 4 个区域组成。

区域	描述	
1	此标题提示您模块的目录参考以及它在 PLC 中的地理位置(机架号和在机架 中的位置)。	
2	此命令字段指示当前模式:配置。	
3	此 模块 级区域包含模块的简短标题。	
4	此 通道 级字段可用于选择要配置的通道、关联功能: 位置 和在其中交换隐式 交换对象的任务:MAST 或 FAST.	

通道配置参数输入区域

在屏幕的右下部分中可以访问参数条目。

┃	『 驱动器反转 ――――	「升压 ――			
□□ 加速	☑ 使能输出	☑ 自动控制			
	□ 检查输入	□ 反转			
「命令模式 A=正脉冲 B=负脉冲 ▼		制动 ————————————————————————————————————			
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□					
最大速度 18000 Hz	_ 参考点				
最大加速度 200 毫秒	短凸轮/王向 				
反射输入 ① 上升沿 ① 下降沿	「事件 (<u>N</u>) 一 「事件				

注意: 每个参数的限制都会显示在状态栏中。

配置用户单位

简介

运动和位置始终以脉冲数或增量表示。速度始终以每秒的脉冲数 (Hz) 表示。

单位选择清单

单位选择清单如下:

描述

可进行两种选择。

配置译码器的命令模式

简介

速度设定点将发送到译码器,以控制步进电机。使用该菜单,可以确定上述信息的传送方式。

命令模式选择清单

译码器的命令模式如下:

描述

可进行两种选择。

配置控制参数

简介

使用控制参数字段可以定义轴控的最大速度和最大加速度。

注意: 速度和频率这两个术语可互换使用,用于说明速度这一概念。

控制参数选择屏幕

译码器的控制参数选择屏幕如下所示:

最大速度	Hz
加速度 最大值\/Max/	400 臺秒
描述

有两个字段需要填写。

选择	含义
最大速度	最大速度(频率)取决于译码器-电机-和运动部件这个整体。 脉冲发生电路在频率为动态时的精度为 1024 个脉冲(包括频率为零的情况)。 所选择的最大速度会对通道的频率精度产生影响。以下列表列出了给定最大频 率间隔的频率精度(最小频率): • [1 Hz 936 Hz] 最小频率 0.92 Hz • [937 Hz 1873 Hz] 最小频率 1.83 Hz • [1874 Hz 4682 Hz] 最小频率 4.58 Hz • [4683 Hz 9365 Hz] 最小频率 9.16 Hz • [9366 Hz 46829 Hz] 最小频率 45.78 Hz • [46830 Hz 93658 Hz] 最小频率 91.55 Hz • [93659 Hz 187316 Hz] 最小频率 183.11 Hz
	示例 :对于最大频率 20 KHz,其精度为(最小频率)45.78 Hz。
最大加速度	在调整中定义的轴的有效加速度必须始终小于或等于在配置屏幕中定义的最大 加速度。 TSX CFY 11和 TSX CFY 21 模块能够每隔 5 毫秒就会修改加速或减速的速率。 动态精度为 63 点,这表示当所选的加速度单位为 Hz/秒时,在给定的最大速 度间隔中,加速度可以是最小加速度的 1 到 63 倍。以下列表列出了在给定速 度间隔的情况下所允许的最小加速度 1 到 63 倍。以下列表列出了在给定速 度间隔的情况下所允许的最小加速度 183 Hz/秒 [937 Hz 1873 Hz] 最小加速度 183 Hz/秒 [1874 Hz 4682 Hz] 最小加速度 916 Hz/秒 [1874 Hz 4682 Hz] 最小加速度 916 Hz/秒 [4683 Hz,9365 Hz] 最小加速度 1831 Hz/秒 [9366 Hz,46829 Hz] 最小加速度 9155 Hz/秒 [46830 Hz 93658 Hz] 最小加速度 18311 Hz/秒 [93659 Hz 187316 Hz] 最小加速度 36621 Hz/秒 当加速度用 毫秒 表示且从启动停止频率 (SS_FREQ) 开始加速时, 最大加速度 对应于达到 最大速度 所需要的最少时间。

配置译码器反转

简介

译码器由 TSX CFY 11 或 TSX CFY 21 模块的通道控制。可以配置译码器**使能输出**和译码器**监控输** 入的逻辑状态以及信号 A 和 B 控制的运动**方向**。

译码器反转的配置屏幕

译码器反转的配置屏幕如下所示:

描述

可以进行三种选择。

字段	含义
使能输出	对于具有 验证 输入的译码器而言,如果未选中此框,则在启用译码器时输出验证将设置为 1。 反之,则设置为 0。 对于具有 禁用 输入的译码器,如果选中此框,则在启用译码器时输出验证将设置为 0。反之, 则设置为 1。
输入监控	如果未选中此框,则在将输入监控设置为 1 的情况下译码器不可用。反之则可用(适用于 Phytron MSD/SD 译码器的配置实例) 如果选中此框,则在将输入监控设置为 1 的情况下译码器可用。反之,则不可用。
命令方向	如果未选择该选项,信号 A 和 B 的方向指的是在配置命令模式 (参见第 <i>142</i> 页)部分中所指 定的方向。 如果选中此框,将反转命令的逻辑。A= 正脉冲/B= 负脉冲 这一选择将变成A= 负脉冲/B= 正 脉冲,而 A= 脉冲/B= 方向这一选择的含义则是:在将 B 设置为 1 时沿轴的负向运动,将 B 设置为 0 时沿轴的正向运动。

配置译码器启用

概览

一些译码器具有可以在 TSX CFY 11 和 21 上配置的启用输入。

启用配置屏幕

译码器启用的配置屏幕如下:

■升压	
-	
凶 自:	动控制
口反	陵

说明

两个选择都是可能的:

字段	含义
自动控制	对于具有 启用 输入的译码器,如果未选中此框,则译码器启用由对象 %Qr.m.c.14 BOOST (参见第 <i>203</i> 页) 控制。
	注意: 在自动控制模式下,BOOST 命令仍然处于活动状态。如果选中"自动控制"选项, 请务必禁止使用此命令以免引起任何冲突。
	对于具有 启用 输入的译码器,如果选中此框,则在运动部件的加速或减速阶段会自动激活译 码器启用。
反转	如果未选中此框,则在启用输出设置为 1 时译码器启用处于活动状态。 如果选中此框,则在启用输出设置为 0 时译码器启用处于活动状态。

配置步进电机的制动

概览

在承受负载应用的环境中,可以在步进电机上使用制动。

制动配置屏幕

制动配置屏幕如下:

┌制动 ────	-
⊠ 白动控制	
⊠ 反转	

说明

两个选择都是可能的。

字段	含义
自动控制	如果未选中此框,则制动由对象 %Qr.m.c.13 BRAKE (参见第 <i>203</i> 页) 控制。
	注意: 在自动控制模式下,BRAKE 命令仍然处于活动状态。如果选中"自动控制"选项, 请务必禁止使用此命令以免引起任何冲突。
	在选中此框的情况下,如果在运动部件启动时将它停止并禁用,则自动激活步进电机制 动的控制。
反转	在未选中此框的情况下,如果制动命令处于活动状态,则将制动输出设置为 0,否则将其设置为 1 (24 V) 以便禁用制动。 在选中此框的情况下,加果制动命令处于活动状态,则将制动输出设置为 1,否则将其设置为 0

配置事件任务

概览

如果要执行使用映象输入的补充过程,则必须配置与轴控通道相关的事件任务。

事件配置屏幕

事件任务的配置屏幕如下所示:

描述

有两个字段需要填写。

字段	含义
事件	如果选择该框,则表示希望将事件任务与轴控通道相关联。
任务编号	该编号表示要附加到轴控通道的事件任务编号。该编号范围对于 TSX P57 1•• 而言为 0 至 31、对于 TSX P57 2••、TSX P57 3•• 和 TSX P57 4•• 而言为 0 至 63,而对于 TSX P57 5•• 而言则为 0 至 127。

参考点配置

概览

为了将运动转换为位置,需要将已知尺寸(通常选定为等于 0)分配给轴上的特定点。此操作称 为设置参考点。如果在一个轴上设置了参考点,则认为该轴"被参考"。

参考点字段的示意图

参考点选取列表如下:

描述

参考点字段定义参考点的类型和方向。

类型**短凸轮**和**长凸轮**通过连接**凸轮参考点**输入上的参考点探测器来进行链接。类型运行结束限位 假定已安装了运行结束探测器。

可能性	接近速度 (1)	参考点速度	图标
短凸轮,正向	F	F	(2)
短凸轮,负向	F	SS_FREQ	
长凸轮,正向	F	SS_FREQ	(2)
长凸轮,负向	F	SS_FREQ	(2)
运行结束限位,正向	F	SS_FREQ	(2)
运行结束限位,负向	F	SS_FREQ	(2)

(1) F 是自动模式下在指令中设定的速度,或者手动模式下的 FMANU 速度(在调整屏幕中定 义)。此速度可以由 CMV(速度调制系数)调制。

(2) 图标对参考点进行图示说明。

参考点命令

执行参考点命令的方式如下:

- 在自动模式下,使用指令代码 14:设置参考点,
- 在手动模式下,使用命令 SET_RP:设置手动参考点。

如果 SS_FREQ 为零,且参考点速度为 SS_FREQ,则实际的参考点速度是模块在选定范围内可 以生成的最小速度。

注意: SS_FREQ = 启动停止频率。

强制参考点

还存在一种强制参考点机制:

- 在自动模式下为命令 G62,
- 在手动模式下为命令 RP_HERE。

参考点的这种设置方式是指将位置强制分配给指定值。此操作不涉及任何运动,因此不考虑所选 RP 的类型。

短凸轮参考点

下表详细描述了短凸轮参考点:

长<mark>凸轮参考</mark>点

下表详细描述了长凸轮参考点:

参考点运行结束限位

下表详细描述了运行结束限位参考点:

验证配置参数

概览

定义所有配置参数之后,必须使用**编辑 → 确认**命令或激活关联的图标来确认配置:

配置参数无效

如果有一个或多个参数值在允许的限制范围之外,将显示错误消息指示参数无效。 例如**最高速度**的值无效:

分析错误	[通道 0]	X
•	<最大速度>参数超出范围(值 (190000) 不在 [0 和 187316] 之间)	
	确定	

在确认配置之前必须更正无效的参数。

注意: 在配置屏幕中,无效参数显示为红色。由于灰显参数是由错误的参数决定的,因此无法对 它们进行修改。

调整参数无效

首次确认配置时,将初始化调整参数。如果对配置值的后续修改导致调整参数不正确,将显示一 条错误消息来指出有问题的参数。

例如,速度在限制范围之外:

分析错词	误[通道 0]	×
•	< 启动和停止速度 > 参数超出范围 (值 (100) 不在范围 [0 至 55] 之间)	
	确定	

用户必须访问调整屏幕,更正无效参数,才能进行确认。

确认回执

如果达到以下要求,则表示已经确认了配置:

- 所有配置参数都正确,
- 所有调整参数都正确,
- 已经在配置编辑器的主屏幕中确认各个注意事项。

第9章

调整步进轴控

本章主题

本章介绍了参数调整的原理:访问屏幕、参数描述和调整过程。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
调整前的预备操作	160
访问调整参数	161
轨道调整	164
调整制动输出	165
调整停止阶段	166
调整手动模式参数	167
确认调整参数	168
保存/恢复调整参数	169
连接模式下的重新配置	170

调整前的预备操作

初始条件

- TSX CFY 模块已安装在 PLC 上,
- 轴控应用程序已连接到 TSX CFY 模块,
- 终端已通过终端口或网络连接到 PLC,
- 轴控配置和程序已完成并已传送到 PLC 处理器,
- PLC 处于运行模式。为简化调整操作,建议禁用运动命令应用程序(例如,使用程序执行条件 位)。

预备检查

- 检查电缆,
- 检查运动是否可以安全开始,
- 检查机械制动的连接(它们通常直接作用于译码器的电源序列)是否符合安全规则,
- 根据制造商的说明,检查和调整译码器,

访问调整参数

概览

要访问调整参数,请在 TSX CFY 的配置屏幕中使用**视图**菜单中的**调整**命令。也可以在配置屏幕或 调试屏幕中的模块区域中选择**调整**。

访问参数

通过调整屏幕,可以选择要调整的通道,以及访问当前参数或初始参数:

命令	功能
选择轴	例如,选择通道 0。
	使用此按钮可以显示当前参数或初始参数。

初始参数

初始参数为:

- 在本地模式的配置屏幕中输入的(或缺省情况下定义的)参数在配置时已启用这些参数,而且 将它们传输到 PLC。
- 上次在连接模式下重新配置时考虑的参数。

当前参数

当前参数是指在连接模式下从调整屏幕(或者由程序通过显式交换)修改并启用的参数。在冷重 启时这些参数由初始参数替换。

注意: 必须在确定调整参数的会话后执行保存参数的操作。

示意图

下图显示调整屏幕。

	1.0: TSX CFY 21		1			
2 —	步进2通道字模块					
3	TSX CFY 21 通道 0 通道 1 功能: 位置控制 任务: MAST	配置 轨道 频率 加速 软件上限 软件下限 一制动输出 关闭延迟	调整 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hz 脉冲 脉冲 脉冲 限冲 保P値 毫秒 接通	电平 — — — — — — — — — — — — — — — — — — —	0 毫秒 0 Hz 0 脉冲
		•				

描述

下表介绍调整屏幕的各个元素及其功能。

编号	元素	功能
1	选项卡	前景中的选项卡指示当前模式(此示例中为 调整)。每个模式均 可通过相应的选项卡进行选择。可用模式包括: ● 调整 ● 配置 ● 调试 (或诊断),只能在在线模式下访问
2	模块 区域	模块缩写标题的简要介绍。
3	通道 区域	 用来: 通过单击参考号,显示选项卡: 描述,提供设备的特性。 I/O对象 (参见 EcoStruxure ™ Control Expert, 操作模式), 用来预先用符号表示输入/输出对象。 故障,显示设备故障(在线模式)。 选择通道, <li显示符号,即用户使用变量编辑器定义的通道名。< li=""> </li显示符号,即用户使用变量编辑器定义的通道名。<>
4	常规参数 区域	 可用于选择轴控功能以及与通道关联的任务: 功能:位置控制。缺省情况下,不配置任何功能(无)。 任务:定义将在其中交换通道对象(隐式交换)的任务 (MAST、FAST 或 AUX0/1)。
5	调整 区域	此区域包含调整参数的各个值。

轨道调整

概览

通过调整屏幕,可以设置轴轨道的特性:

- 启动和停止频率,
- 加速度,
- 软件上限,
- 软件下限。

示意图

轨道特性的输入区域如下。

「轨道 (」) 启动 / 停止频率	100 Hz
加速	9155 Hz/ 秒
软件上限	10 000 000 脉冲
软件下限	-10 000 000 脉冲

描述

下表描述了可输入轨道特性的对话框。

ь.	<u>ه</u> رييز				
子段	畑心				
启动/停止频率	称为 SS_FREQ,这是运动部件的最小运动速度。 如果在配置中定义的最大速度 FMAX 低于 4 KHz,则 SS_FREQ 必须介于 0 到 FMAX 之间。 否则,SS_FREQ 必须介于 0 到 4KHz 之间。 如果保留 SS_FREQ 为零,则启动和停止频率是该范围中的最小频率 (参见第 <i>144</i> 页)。				
加速	称为 ACC,这是运动部件加速或减速的梯度,也是从速度 SS_FREQ 加速到 FMAX 所需的时间(请参见 <i>配置控制参数</i> , 第 <i>144</i> 页)。 当用户定义的单位为 Hz/秒 时,此参数必须介于最大速度范围的加速度下限和在配 置中输入的加速度之间(请参见 <i>描述</i> , 第 <i>145</i> 页)。 当用户定义的单位为 毫秒 时,此参数必须介于在配置中输入的最大加速度值和 5000 毫秒 之间。				
软件上限	称为 SLMAX,并使用脉冲数表示。这是运动部件正向运动所能到达的最远位置。				
软件下限	称为 SLMIN,并使用脉冲数表示。这是运动部件负向运动所能到达的最远位置。				
软件限位必须满足以下条件: ● SLMIN 小于或等于 SLMAX ● SLMIN 和 SLMAX 介于 -16 777 216 和 +16 777 215 之间					
当					

调整制动输出

概览

如果在配置时选择了自动制动管理,则可以使用调整屏幕对制动输出进行参数化。可以在以下两 种状态中设置延迟:

- 激活时,
- 禁用时。

示意图

激活和禁用时输入延迟的区域如下所示。

l,	一输出到动 (D)						
I			_			 	
I		5 금과		- 拉语	77530		
I	大团処心	「「毛砂」		(接)回	延心	≤□宅型	
I			_			 	

描述

下表描述了在激活和禁用时输入延迟的对话框。

调整停止阶段

概览

该字段是在速度等于启动和停止速度 (FDA) 时,**停止阶段**的时间长度。该时间段必须介于 0 到 1000 **毫秒**之间。

在配置了**自动管理** (参见第 *148*页)制动的情况下,**停止阶段**的持续时间和制动激活延迟时间 (当延迟值为负时)之间存在着某种关系。

操作

在停止阶段的持续时间内,如何进行轴控?

调整手动模式参数

概览

调整手动模式参数可以定义手动模式下运动部件的动作 (参见第 124 页)。有以下两个参数:

- 速度,
- 参考点的值。

示意图

手动模式参数的输入区如下:

Ī	一手动 模式参数	<
I	速度	300 Hz
I	RP 值	10 000 脉冲

描述

下表描述用于输入手动模式参数的对话区。

字段	描述
速度	这是手动模式下运动部件的运动速度 MAN_SPD。 当此字段受指令 JOG+、JOG-、INC+、INC- 以及 SET_RP 中的接近 速度和停止速度等控制时,其值将确定手动模式下运动部件的速度。 此字段的值必须介于启动/停止速度 SS_FREQ 和在配置 (参见第 <i>144</i> 页)中设置的 最高速度 FMAX 之间。 就像在自动模式下,实际的运动速度由 速度调制系数 (CMV) 调制。
RP 值	这是在手动模式下设定参考点时加载到当前位置中的值。 在轴控处于手动模式的情况下设定手动模式下的参考点时,"参考点" 字段的值 RP_POS 被传输到最近的位置 X_POS。 通常,此字段的值必须介于 SLMIN 和 SLMAX 之间。在 SLMIN=SLMAX=0 的特殊情况下,此字段的值必须介于 -16 777 216 和 16 777 215 之间。

确认调整参数

简介

在输入调整参数后,必须使用**编辑/确认**命令或单击相应图标以确认这些参数。

参数超出限制

如果一个或多个参数值不在允许的范围之内,将出现错误消息以指出相关的参数。 您必须更正出现故障的参数,然后进一步确认。

未更改配置参数

如果未修改配置参数,则修改调整参数只会改变轴的行为,并不会中断该轴的工作。 修改后的调整参数成为当前参数(初始参数保持不变)。

注意: 在冷启动过程中,初始参数将代替当前参数。 初始参数可通过保存命令或重新配置操作来进行更新。

保存/恢复调整参数

保存参数

要保存当前参数(更新初始参数),请使用**服务 → 保存参数**命令。

恢复参数

要使用初始参数替换当前参数,请使用**服务 → 恢复参数**命令。

注意: 应用程序可以使用指令 RESTORE_PARAM 来执行此恢复操作。在冷启动时也会自动执行 该恢复操作。

连接模式下的重新配置

简介

在修改配置参数时,必须使用**编辑 → 确认**命令或通过单击相应图标来确认这些参数。

参数可在连接模式下进行修改

只有非灰显状态的参数才能在连接模式下修改。其他诸如激活事件任务的参数必须在本地模式下 修改。每次重新配置后,修正后的方案都会变为初始方案。

停止正在进行的运动

连接模式下的所有配置都会导致相关通道停止工作,从而导致正在进行的运动停止。这种情况将 通过对话框进行显示:

调整

重新配置时的参数交换

下图显示了在连接模式下重新配置时的参数交换:

(1) 或者为调整屏幕(如果已在配置屏幕中首先修改了配置参数)。

第10章 调试步进轴控程序

本章主题

本章介绍了轴控通道在以下模式下的调试功能:停止、直接、手动和自动。此外,本章还介绍了 诊断屏幕,通过它可以访问可能出现的错误。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
调试原理	174
调试屏幕的用户界面	175
调试屏幕描述	177
有关调试屏幕的详细信息	179
停止模式(关)	183
直接模式(直接驱动器)	184
手动模式(手动)	185
自动模式(自动)	186
通道诊断	187
存储、文档和仿真	188

调试原理

概览

轴控(已集成到 Control Expert 程序中)使用 Control Expert 调试功能。

Control Expert 提供的有关可能性的概要

- 程序的实时显示和动态显示。 例如,在 Grafcet 语言中,如果对步中的每个运动编程,则可以轻松知道哪个运动正在进行。
- 设置断点和程序执行:逐个循环、逐个网络或逐个语句。
- 访问动态数据表。这样,您就可以显示状态字和位,以及控制 SMOVE 的命令位。您还可以强制对象位和阻止 Grafcet 开发。

应用专用调试屏幕

Control Expert 软件还提供了专用于 TSX CFY 模块的应用专用调试屏幕,您可以通过该屏幕访问 所有必要的信息和命令:

步进2通道字模块			● ○ ○ Run Err IO
通道0 通道1	□ 配置 3 调整 ■ 关闭 [□] 自动	■ 手动 ■ 直接驱动 !	故障
取消强制 功能: 启用位置带 ▼ T 夠 he: MAST ● <th>运动: 脉冲 速度: 脉冲 / 秒 当前 目标 余量 X 6 0 0 F 0 0 ○ N 0 G3x 0 ⑥ N 0 G3x 0 ⑥ MC 0 ○ ○ 下一个 ● 0 ○ ○ ○ SMC 1000 ● 1/1000</th> <th>執 确定 ● 确定 已参考 ● 日参考 ● 日参考 ● 日参考 ● 日参考 ● 日参 ● 日参 ● 日参 ● 日参</th> <th>0) 外部停止) 限位 +) 限D位 +) 限P凸轮) 聚中凸轮) 聚动器状态) 步丢失 ④ 复位步 绝命令 件 确认</th>	运动: 脉冲 速度: 脉冲 / 秒 当前 目标 余量 X 6 0 0 F 0 0 ○ N 0 G3x 0 ⑥ N 0 G3x 0 ⑥ MC 0 ○ ○ 下一个 ● 0 ○ ○ ○ SMC 1000 ● 1/1000	執 确定 ● 确定 已参考 ● 日参考 ● 日参考 ● 日参考 ● 日参考 ● 日参 ● 日参 ● 日参 ● 日参	0) 外部停止) 限位 +) 限D位 +) 限P凸轮) 聚中凸轮) 聚动器状态) 步丢失 ④ 复位步 绝命令 件 确认

调试屏幕的用户界面

访问调试屏幕

只有终端处于**连接模式**时,才可以访问调试屏幕。 如果已经处于连接模式,则可以按以下方法访问调试屏幕:

- 选择配置编辑器,
- 选择并确认(或双击)包含轴控模块的机架位置,
- 缺省情况下,将显示处于连接模式下的调试屏幕。

命令按钮

命令按钮 的操作如下所示:

- 对于状态触发的命令(JOG 命令除外):
 按下后松开此按钮将激活相关命令。如果该命令被识别(相应的命令位 %Q 设置为 1),则按钮内部的灯就会亮起。
 再次按下然后松开此按钮则可停用此命令。如果该命令被识别(相应的命令位 %Q 设置为 0),则按钮内部的灯就会熄灭。
- 对于跳变沿触发的命令:
 只要按下然后松开此按钮即可激活命令。按钮内部的灯将亮起,然后又会自动熄灭。
 此按钮旁边的灯表示模块是否已识别该命令。

输入字段

所有在输入字段中输入的值都必须通过 按钮进行确认。

使用键盘

您可以使用键盘浏览各个屏幕或激活命令:

健	操作
Shift F2	从一个区域转到另一个区域
选项卡	在同一个区域中,从一组命令转到另一组命令
箭头键	在一组命令中,从一个命令移至另一个命令
空格键	激活或禁用一个命令

与程序的冲突

执行命令或写入变量的 Control Expert 程序可能会与调试屏幕中执行的命令之间发生冲突。在任何 情况下,只有最后识别的命令才会有效。

动态显示

可以在显示字段中停止动态显示:

● 使用**服务 → 停止动态显示**命令,可停止显示字段中的动态显示并禁用命令按钮。使用图标 也

可以实现这一功能。

● 使用**服务 → 动态显示**命令可重新激活动态显示。也可以使用图标。

调试屏幕描述

概览

调试屏幕有一个公用标题,并由模块区域和通道区域/功能区域组成。

0.10: TSX CFY 21										
步进2通道字模块								6	0	\bigcirc
								Run	Err	10
					1					
● <u>■</u> ■ 0 ▲ • • • ○ 通道 1 ■	日配置日	调整	● 关闭	目动	 手动 	□直接驱	(动 🗖	故障		
取消强制										
功能:										
任务:										
MASI										
手动										
关闭										
,										

模块区域

该表介绍了模块区域:

灯	状态	含义
RUN	亮	模块正在运行中
ERR	亮 闪烁	模块已停止运行 与处理器通讯时出错
IO	亮	处理错误(AX_FLT %Ir.m.c.2 位) 模块故障。选择与此按钮相关联的 缺省值 选项卡时,将出现诊断窗口以 明示错误的根源(请参阅 <i>诊断和维护</i> , 第 <i>191</i> 页)。

通道区域/功能区域

除了**通道**和**功能**选项之外(所有屏幕均具备),该区域还包括模式选择器按钮和取消强制按钮:

命令	功能
Auto Off	用来选择操作模式的按钮 如果要更改操作模式,请单击要选择的新模式的名称(或根据需要单击此按 钮数次)。 如果使用键盘,请使用 Tab 键,然后根据需要按 空格 键数次。 也可以通过 视图 菜单访问操作模式。 当模块真正识别了所选模式时,将显示所选模式中的运动监控区。 注意:尽管选定了模式,但模块通道有可能不识别它(例如,当 PLC 处于停 止模式时就会出现这种情况)。
Déforcer	使用取消强制按钮可以将所有已被强制的对象一起取消强制。

有关调试屏幕的详细信息

概览

调试屏幕因所选开关位置而异。可选的模式有四种:

- *停止模式 (关)*, 第 183 页
- 直接模式(直接驱动器),第 184页
- *手动模式 (手动)*, 第 185页
- 自动模式(自动),第 186页

显示在这四个屏幕中的字段和按钮的详细信息如下。

运动/速度字段的描述

该表描述了"运动/速度"字段的显示区:

显示区	描述	
当前 X	以脉冲数显示运动部件的位置。	
目标 X	显示运动部件的位置设定点(要到达的位置)	
剩余 X	显示尚未执行的剩余脉冲数	
当前 F	以脉冲数显示运动部件的速度	
目标 F	显示运动部件的速度设定点:要达到的速度(由 SMC(速度调制系数)调制的手动速度)	
N G G9	在自动模式下,显示当前正在执行的指令: ● N 代表步数 ● G9 代表运动类型 ● G 代表指令代码	
位置	该滑块显示运动部件在配置屏幕中所定义的限位之间的变化情况。该滑 块的颜色呈绿色,如果超出限位则变成红色。	
速度	该滑块显示了移动部件的速度与最高速度相比的百分比。该滑动块的颜 色呈绿色,如果超出 VMAX,则变成红色。	

该表描述了"运动/速度"字段中的指示灯:

指示灯	状态	含义
正向 负向	1	指示运动部件正在正向运动 指示运动部件正在负向运动
AT 点	亮	指示正在进行的运动已经完成,运动部件已到达目标点
下一个	亮	指示运动部件已就绪,可以接收运动命令
完成	亮	指示正在进行的运动已完成
立即暂停	亮	指示立即暂停功能已激活,即速度调制系数 (SMC) 设置为 1。此时,目标位置包含立即暂停的停止位置。

"轴"字段的描述

该表描述"轴"字段的显示区和命令区:

指示灯/按钮	状态	含义
确定	亮	轴处于工作状态(无阻塞故障)
被参考	亮	轴已被参考:
已停止	亮	运动部件静止
启用	/	该按钮用于控制变速控制器的激活继电器

"I/O"字段的描述

该表描述"I/O"字段的显示区:

指示灯	含义
外部停止	外部停止 输入上的信号状态(0 或 1)。当激活 外部停止 时,该指示灯就会亮起, 且输入处为 24 V。
运行终点 +/-	+/- 限位开关 功能的活动。当运动部件处于限位开关的停止点时,该指示灯就会亮起, 且输入处的 24 V 将消失。
RP 凸轮	参考点 输入上的信号状态(0 或 1)。当运动部件处在凸轮上时,该指示灯就会亮起, 且输入处为 24 V。
事件凸轮	事件 输入上的信号状态(0 或 1)。当运动部件处在 事件凸轮 上时,该指示灯就会亮 起,且输入处为 24 V。
控制译码器	当译码器未发出 就绪 信号时,该指示灯就会亮起。当译码器发出 确定 信号时,该指示 灯便会熄灭。电平取决于配置时所做的选择。
步丢失	步丢失监控 输入上的信号状态(0 或 1),信号由译码器发出。将输入设置为 1 (电缆未连接)时该指示灯将亮起,否则将熄灭。
复位步	该按钮控制是否复位用于检测译码器步丢失的检测系统。

1 = 指示灯亮,0 = 指示灯灭

命令的描述

该表描述了命令区:

命令	描述
停止	可按照配置时定义的减速,使运动部件停止
参数	用于输入增量运动(INC+ 或 INC- 命令)或强制参考点的值
SMC(速度调制系数)	用于输入范围 0 至 2000 之间的某个值,该值确定了速度的乘法系数 (0.000 至 2.000,步长为 1/1000)
"事件源"的描述

该表描述了"事件源"区:

命令	描述
参考点(指示灯)	根据 SMOVE 请求 (G07) 来指示事件凸轮(映象输入)的定位
参考点(字段)	显示存储的参考位置
结束 G10/G11	指示在执行 G10 或 G11 指令的过程中发生了事件
结束 G05	指示 G05 指令执行结束
至 G05	指示 G05 指令中定义的"超时"已经过时

"命令"字段的描述

该表描述了"命令"字段的按钮:

命令	描述
JOG-	负向可视运动命令 (1)
JOG+	正向可视运动命令 (1)
INC-	递增运动命令(负向,距离在 参数 字段中定义)
INC+	递增运动命令(正向,距离在 参数 字段中定义)
手动参考点	搜索和采用手动参考点的命令。当前位置采用在调整屏幕中定义的值 RP 值 ,并发现与 配置时定义的类型一致的参考点。
强制参考点	使用递增编码器的强制参考点命令。将当前位置强制为在 参数 字段中定义的值 该类型的参考点不会引起运动部件的运动。
制动	用于激活或停用制动输出的手动命令 在配置了自动制动管理的情况下,则该手动制动命令 (%Qr.m.c.13) 和自动命令之间最 后一个激活或停用的命令跳变沿将考虑在内。
升压	用于激活或停用升压输出的手动命令 在配置了自动升压管理的情况下,则该手动升压命令 (%Qr.m.c.14) 和自动命令之间最 后一个激活或停用的命令跳变沿将考虑在内。
暂停	在下个运动停止结束前停止运动序列
PLC 同步	从处理器触发事件的命令

(1) 当按下按钮时,这些命令便处于活动状态。它们用于释放处在软停止之外的运动部件(在确认 故障之后)。

"故障"字段的描述

该表描述了"故障"字段的显示区和命令区:

指示灯/按钮	状态	含义
命令被拒绝	亮	拒绝上一个命令
硬件	亮	外部硬件故障(编码器、变速控制器、输出等)
轴	亮	应用故障(跟随错误、软停止等)
确认	1	故障确认按钮。按下此按钮即可确认所有已消失的故障

停止模式(关)

概览

在该模式下,轴控通道仅报告位置和速度。该通道不对模块运动进行监控。译码器确认输出继续 由 ENABLE (%Qr.m.c.10) 命令监控。

0.5 : TSX CAY 21	
步进2通道字模块	i C C Run Err IO
/● 通道 0 ▲ ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	□ 配置 □ 调整 □ 关闭 ■ 自动 ■ 手动 ■ 直接驱动 ■ 故障
取消强制 功能: 位置检查 任务: MAST	运动:脉冲 脉冲速度/秒 報 × 6 F 0
手动 直动 王 动 重接 王 动	

有关该屏幕中的字段和按钮的详细信息,请参阅 有关调试屏幕的详细信息, 第 179 页。

直接模式(直接驱动器)

概览

调试

使用直接模式,可根据在 PARAM 变量中指明的运动设定点直接控制运动部件的运动。

0.10 : TSX CFY 21			
步进2通道字模块			• • •
			Run Err 10
·◆ 通道0 ▲	□ 配置 □ 调整 ■ 关闭 ■ 自动 ■	手动 🛄 直接驱动	故障
	运动:脉冲 速度:脉冲/秒 ————————————————————————————————————	コ [釉 ――――」 [^{1/0}	
取消强制		→ 确定 · · · · · · · · · · · · · · · · · ·	外部停止 限位 +
	F 0	□ □ 100 100 100 100 100 100 100 100 100	负限位 RP 凸轮
0786. 位置检查 **			事件凸轮
任奉:	位置		多五失 日本
MAST	[] 速度0%	<u>○</u> 启用	〕复位步
	参数 0 Hz 0 命令		误
手动			拒绝命令 硬件
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	0	•	轴
自动 夏 盧接	停止 F8) 确认
关闭			

有关该屏幕中的字段和按钮的详细信息,请参阅*有关调试屏幕的详细信息*,第 179页。

手动模式(手动)

概览

手动模式用于从调试屏幕直接控制运动部件的运动。方法是使用命令 JOG+、JOG-、INC+,

0.10: TSX CFY 21		
步进2通道字模块	1	00
	Ru	un Err IO
→• 通道 0 ▲	□ 配置 □ 调整 ■ 关闭 ■ 自动 □ 手动 ■ 直接驱动 ■ 故障	
取消强制 功能: 位置检查 任务: MAST	运动:微米 速度:毫米/分 抽 I/O 当前 目标 余量 × 6 0 正向 F 0 0 ※ 位置 ● 第件2 速度 0% ● 日本 SMC 1000 ÷ /1000 ● 合 0% ● ● 小田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	·止 · · · · · · · · · · · · ·
手动 自动】	○ INC - ○ INC + ○ 手动参考点 ○ 手动参考点 ○ 報动 ○ 新动 ○ ● 升压	

有关该屏幕中的字段和按钮的详细信息,请参阅 有关调试屏幕的详细信息, 第 179页。

自动模式(自动)

概览

自动模式是执行 SMOVE 功能时所处的模式。

0.10: TSX CFY 21	
步进2通道字模块	● C C
	Run Err 10
〕● 通道 0 ▲	□ 配置 □ 调整 □ 关闭 □ 自动 □ 手动 □ 直接驱动 □ 故障
取消强制	运动:脉冲 速度:脉冲 / 秒 当前 目标 次 6 0 0 正向 日参考
功能:	
位置检查 💌	N 0 G9x 0 G 0 ▼下一个 0 镀铪暂停 0 驱动器状态
任务:	位置 ⑥ 步丢失 ⑥ 点田
MAST	2000 二 /1000 「命令 ――」「借足 ――」
	 ○ ◎ 制动 ● 拒绝命令
手动	EVT 源 ◎ 结束 G10/G11 ◎ 结束 G05
自动 (一) 直接 弧动	● ● 至 GO5 ● 暂停 ● 轴
关闭	F8 参考点 0 脉冲 PLC 同步 确认

有关该屏幕中的字段和按钮的详细信息,请参阅 有关调试屏幕的详细信息, 第 179 页。

通道诊断

概览

模块屏幕呈现在线模式下的**故障**选项卡,从中可以访问在模块和通道上检测到的故障的详细信息。 通道诊断示例。

日配置目	调整 ■ 关闭	自动 日 手动	■ 直接驱动	● 故障	
┌内部故障 -		↑ 「外部故障 ────		其他故障 -	
	皮 圬 絁				
配置角	昇幕				
命令	16#2	手动命令错误 - 正	在运动		

各个字段的描述

故障屏幕中含有以下字段:

字段	描述
内部故障	模块的内部错误,出现这种错误时通常需要更换模块
外部故障	来自操作部件 (参见第 <i>120</i> 页)的错误
其他故障	来自应用程序 (参见第 <i>122</i> 页)的故障
命令被拒绝	指明命令被拒绝 (参见第 <i>123</i> 页)的原因和消息编号

存储、文档和仿真

存储

当在连接模式下调试完程序后,必须执行以下保存操作:

- 如果修改了调整参数,则保存它们。为此,请选择调整屏幕,然后使用**服务 → 保存参数**命令,
- 使用**文件 → 保存**命令将应用程序保存到磁盘上。

文档

轴控应用程序的文档包含在完整的 Control Expert 应用程序文档之中。使用该文档,可以在文件中 分组:

- 程序,
- 保存的配置和调整参数。

仿真

要运行 TSX CFY 模块的通道,只需具备 Telefast 离散量仿真器条即可(参考号为 ABE-6TES160),它由机架电源提供 24V 电源,并通过带状电缆将其直接连接到 TSX CFY 的辅助 I/O HE10 连接器上。

对于通道0,将电平1加在输入2、4和5(紧急停止和运行终点)上。

对于通道 1(仅适用于 TSX CFY 21),则加在输入 8、10 和 11 上。而在其他各处保持电平为 0。 配置轴控通道时,请选中**驱动器反转监控输入**框。这样便可在缺少到 SUB D 译码器连接的情况下 进行操作。

确认

如何使用 TSC CFY 执行仿真

要运行 TSX CFY 模块的通道,只需具备 Telefast 离散量仿真器条即可(参考号为 ABE-6TES160),它由机架电源提供 24V 电源,并通过带状电缆将其直接连接到 TSX CFY 的辅助 I/O HE10 连接器上。

步骤	操作
1	对于通道 0,将电平 1 加在输入 2、4 和 5(紧急停止和运行终点)上。
2	对于通道 1(仅适用于 TSX CFY 21),则将电平 1 加在输入 8、10 和 11 上。 而在其他各处保持电平为 0。
3	配置轴控通道时,请选中 驱动器反转监控输入 框。这样便可在缺少到 SUB D 译码器连接的情况下进行操作。
4	确认实施屏幕中的通道处于手动模式。
5	使用按钮 JOG+ 或 JOG- 来仿真运动部件的运动。

第11章 操作

设计操作员对话框

按钮框

要设计简单或复杂的按钮框,需要以命令、状态位及字 (参见第 203 页)的形式来自行管理基本 命令和信息。

第12章 诊断和维护

本章主题

本章描述在某些维护情况下要执行的操作(症状、诊断和要采取的一系列操作)。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
故障监控和命令执行	192
诊断帮助	193

故障监控和命令执行

故障监控

检测可能发生故障的方法有以下几种:

- 通过位于模块前面板上的 LED,
- 诊断屏幕,用户可以通过在连接模式下使用 DIAG 键从轴控模块的所有应用专用屏幕 (参见 第 187页)中访问该屏幕,
- 调试屏幕 (参见第 177 页),
- 故障位和状态字(参见第 203 页)。

运动命令

要(在自动或手动模式下)执行运动命令,必须满足以下条件:

- 轴已配置,并且没有阻塞问题;
- 变速控制器命令处于活动状态:ENABLE (%Qr.m.c.10) 和 STOP (%Qr.m.c.8) 命令处于停用状态
- 已选定自动或手动模式;
- 对于使用绝对位置的命令,位置介于限位 SL_MIN 与 SL_MAX 之间;
- 对于使用相对位置的命令,根据当前相对位置计算的目标位置介于限位 SL_MIN 与 SL_MAX 之间;
- 除了参考点和 JOG 命令之外,轴已被参考;
- 速度 F 必须小于或等于 FMAX;
- 如果运动部件位于运行终点限位之外,所请求的运动方向必须是将运动部件返回限位之内的方向。

修改 CMV (速度调制系数)参数

如果对 CMV(速度调制系数)参数的修改导致速度大于 FMAX,则该参数将限定为 FMAX。

序列控制

如果配置时未选择**序列控制**选项,则根据任意序列控制进行的连续运动将一直持续到软停止才会 结束。

诊断帮助

概览

您可能会遇到需要解决的问题。以下过程有助于诊断这些情况并告诉您解决方法。

各种情况下均可遵循的过程

未识别新参数

特征	TSX CFY 模块似乎未识别出由 WRITE_PARAM 写入的新参数
诊断	在应用程序中编写 READ_PARAM 指令,以便找出模块实际使用的值。 如果正在进行另一个调整交换,则激活的 WRITE_PARAM 将被忽略。
解决方法	在进行任何调整交换之前,请测试 ADJ_IN_PROGR 位 (%MWr.m.c.0.2)

事件处理

特征	未执行与轴控通道相关联的事件处理				
诊断	检查整个事件跟踪字符串是否有效 ● 在配置中声明的事件编号与事件处理中的事件编号相同 ● 事件源未被屏蔽(SMOVE 命令的代码 M) ● 事件的授权为系统级别 ACTIVEVT = 1 (%S38) ● 事件在系统级别 (UNMASKEVT) 未被屏蔽				
解决方法	请参考事件的用法				

调整丢失

特征	所做的调整丢失
诊断	冷启动导致通过屏幕或 WRITE_PARAM 指令进行的当前调整丢失
解决方法	请使用 服务 → 保存参数 命令或 SAVE_PARAM 指令保存当前调整。

状态字不一致

特征	状态字 EXCH_RPT (%MWr.m.c.1) 和 CH_FLT (%MWr.m.c.2) 与轴控通 道的状态不一致。
诊断	这些字仅根据显式请求 READ_STS 进行更新
解决方法	在应用程序中编写 READ_STS 指令

命令无效

特征	调试屏幕中的命令没有任何作用			
诊断	应用程序或任务处于"停止"模式			
解决方法	将应用程序或任务切换为"运行"模式			

无法修改命令

特征	调试屏幕中的某些命令无法修改
诊断	这些位是由应用程序写入的
解决方法	对类型为 %Qr.m.c.d 的对象使用位强制或重新编写应用程序,这样就不 会系统化地写入这些位(对转换进行修改,而不修改状态)

无法输入字符

特征	不能在调整和配置屏幕的数值字段输入3个以上的字符
诊断	未在 Windows 配置窗格中选择千位分隔符
解决方法	在 Windows 配置窗格的 数字格式 字段中选择 国际 图标。 使用 修改 命令并选择千位分隔符

命令被拒绝

特征	在直接驱动模式下,在超出软停止位置并停止之后,命令被拒绝。
诊断	直接驱动模式是在会话处于手动或自动模式之后激活的,在这期间已经 获取了一个参考点。轴已被参考。对软停止的监控处于活动状态。 超出这些限位之一都会导致错误的停止。 不接受直接驱动模式下的进一步运动。
解决方法	 重启运动的操作有两种: 在运动部件完全停止之后,会导致丢失轴参考: 取消设置通道,ENABLE = 0 (%Qr.m.c.10) 重新设置通道,ENABLE = 1 (%Qr.m.c.10) 确认错误(命令 ACK_FLT (%Qr.m.c.9)的上升沿)
	 ● 将运动部件的位置强制在软停止之间: ○ 暂时切换为手动模式 ○ 确认错误:ACK_FLT(%Qr.m.c.9) ○ 将软停止之间的某个位置作为强制的参考点 ○ 切换回直接驱动模式。

在自动模式下识别命令时出错

特征	在自动模式下,在过冲了运行终点的软停止之后,未正确执行运动命令。
诊断	在过冲了运行终点限位之后,仅接受那些以返回方向返回到运行终点限位之内 的运动命令。
解决方法	请检查所请求或未正确执行的运动是否要将运动部件返回至运行终点限位之内。

第13章 补充功能

尺寸学习

概览

以下 Control Expert 程序的示例支持 16 位尺寸的学习和使用。 在使用部分,我们将首先声明 T_STEPPER_STD 类型的 AXIS_0 变量

尺寸学习

该图表支持对 16 尺寸学习的编程。

步骤 50 激活时的操作

<存储 %MW99 是为了将其当作限位使用

! %MW98 := %MW99;

〈在学习阶段初始化索引

! %MW99 := −1;

TRANSITION: X50 \rightarrow X51

!RE AXIS_0. NEXT

步骤 51 激活时的操作

<更新索引 !%MW99 :=%MW99+1; <位置的学习 !%MD200[%MW99] := AXIS_0.POS; TRANSITION: X51 -> X52 !%MW99 <= 16 TRANSITION: X51 -> X53 !%MW99 > 16 TRANSITION: X53 -> X50 !RE AXIS_0.DONE TRANSITION: X52 -> X51 !RE AXIS_0.NEXT TRANSITION: X52 -> X50 !RE AXIS_0.DONE

使用尺寸

本图表支持对尺寸使用的编程

步骤 42 激活时的操作

<将 %MW97 初始化为执行索引

!%MW97 := −1;

TRANSITION: X42 -> X43

!RE AXIS_0. AX_FLT

步骤 43 激活时的操作

〈对执行索引进行递增

!%MW97 := %MW97+1;

<执行下一段

!SMOVE (AXIS_0, %MW97, %KW8, %KW1, %MD200[%MW97], 150000, 0);

%KW8:%90运动至绝对值

%KW1:09 转至断点

TRANSITION: X43 -> X46

!AXIS80.NEXT AND %MW97 < %MW98) AND NOT AXIS_0.AX_FLT

TRANSITION: X43 -> X42

!AXIS_0.DONE AND (%MW97 >= %MW98) OR AXIS_0.AX_FLT

TRANSITION: X46 -> X43

! TRUE

第14章 特性和性能

性能特性和限制

概览

本节介绍步进控制功能的性能和特性:

- SMOVE 功能所占用的存储器大小,
- 执行步进控制功能所需的时间,
- 模块循环时间,
- 低阶值运动的特性,

SMOVE 功能的大小

该表指示执行 SMOVE 指令期间使用的存储区及其占用的 16 位字的个数。

	位存储器	数据区	程序区
TSX CFY 11	29	390	170
TSX CFY 21	58	780	220
第一次配置通道时的额外开销	0	0	2290

执行时间

该表详细介绍了与步进轴控的相关功能的执行时间。

功能描述	执行时间
采集 TSX CFY 中的输入/输出	95 微秒
SMOVE 功能	840 微秒
READ_STATUS	540 微秒
READ_PARAM	460 微秒
WRITE_PARAM	760 微秒
SAVE_PARAM	500 微秒
RESTORE_PARAM	780 微秒
对调整的识别(在 WRITE_PARAM 指令之后)	60 毫秒,对于 TSX CFY 11 210 毫秒,对于 TSX CFY 21
对通道的重新配置进行识别	1.5 秒

注意: 模块循环时间为 10 毫秒

小尺寸运动的特性

低阶值运动是指不采用指令中所指定的要达到速度的运动。其速度曲线近似于三角形而不是梯形。 现以指令 SMOVE (Axis_ch1,1,90,09,X1,V,0)为例予以说明

- Axis_ch1 是一个 IODDT 类型的变量 (T_STEPPER_STD),
- X1 指要到达的位置,
- V 是 巡航速度,即运动必须达到的速度。
- 注:X0 是运动部件的起始位置。

该表描述了可能出现的情况。

第15章

应用程序专用的步进轴控语言对象

本章主题

本章描述与应用程序专用的轴控相关联的语言对象及其各种使用方法。

本章包含了哪些内容?

本章包含了以下主题:

主题	页
应用专用分步轴控制功能的语言对象简介	204
与应用专用功能关联的隐式交换语言对象	205
与应用专用功能关联的显式交换语言对象	206
使用显式对象管理交换和报告	208
T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换)	212
T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换)	214
T_STEPPER_STD 类型的 IODDT 的内部控制对象(显式交换)	215
T_STEPPER_STD 类型的 IODDT 的调整参数的对象(显式交换)	217
处理器与轴控模块之间的交换	218
错误代码列表 (CMD_FLT)	219
T_GEN_MOD 类型 IODDT 语言对象的详细信息	223

应用专用分步轴控制功能的语言对象简介

常规

IODDT 是由制造商预定义的。它们包括属于应用专用模块通道的输入/输出语言对象。 分步轴模块具有一个关联的 IODDT。

应用专用轴有一个 IODDT 类型:

• T_STEPPER_STD,适用于 2 个模块 TSX CFY 11/21

注意: 可以通过以下两种不同方式创建 IODDT 变量:

- 使用 I/O 对象 (参见 EcoStruxure ™ Control Expert, 操作模式)选项卡
- 数据编辑器 (参见 EcoStruxure ™ Control Expert, 操作模式)

语言对象类型

此 IODDT 包含一组支持控制和验证其操作的语言对象。 语言对象有两种类型:

- **隐式交换对象**,在与模块关联的任务的每个循环周期中自动交换,
- **显式交换对象**,在应用程序请求时使用显式交换指令交换。

显式交换与模块的输入/输出(测量结果、信息和命令)有关。 显式交换用于确定模块的参数和诊断。

与应用专用功能关联的隐式交换语言对象

概览

集成的应用专用接口或额外的模块可以自动增强用于对此接口或模块进行编程的语言对象应用。 这些对象对应于输入/输出图像和模块或集成应用专用接口的软件数据。

提示

当 PLC 处于运行或停止模式时,将在任务开始时,在 PLC 存储器中更新模块输入(%I 和 %IW)。 仅当 PLC 处于运行模式时,才会在任务结束时更新模块输出(%Q 和 %QW)。

注意:如果任务运行于停止模式,则根据所选配置的不同,可能出现以下两种情况之一:

- 输出设置为故障预置位置(故障预置模式)
- 输出保持其最后的值(维护模式)

8

下图显示了 PLC 任务的操作循环(循环执行)。

与应用专用功能关联的显式交换语言对象

简介

显式交换是应用户程序的请求,使用以下指令执行:

- READ_STS(读取状态字)
- WRITE_CMD(写入命令字)
- WRITE_PARAM(写入调整参数)
- READ_PARAM(读取调整参数)
- SAVE_PARAM(保存调整参数)
- RESTORE_PARAM(恢复调整参数)

关于指令的更多详情,请参阅 EcoStruxure ™ Control Expert I/O 管理功能块库。

这些交换适用于属于一个通道的一组相同类型的 %MW 对象(状态、命令或参数)。

这些对象可以:

- 提供有关模块的信息(如在通道中检测到的错误类型)
- 使用命令控制模块(如切换命令)
- 定义模块的操作模式(在应用程序进程中保存和恢复调整参数)

注意:为避免同一个通道同时发生多个显式交换,在调用任何使用此通道的 EF 之前,必须先测试 与该通道关联的 IODDT 的字 EXCH_STS (%WWr.m.c.0) 的值。

注意: 在 Quantum EIO配置中通过 eX80 适配器模块 (BMECRA31210) 配置X80 模拟量和数字量 I/O 模块时,不支持显式交换。在操作过程中,无法从 PLC应用程序设置模块的参数。

使用显式指令的一般原则

下图显示了可以在应用程序和模块之间执行的各种类型的显式交换。

应用程序

模块

(1) 仅适用于 READ_STS 和 WRITE_CMD 指令。

管理交换

在显式交换过程中,检查性能以查看在正确执行交换时是否只考虑数据。

为此,可以使用两种类型的信息:

- 有关正在交换的信息 (参见第 210 页)
- 交换报告 (参见第 211 页)

下图介绍了管理交换的原则。

注意:为避免同一个通道同时发生多个显式交换,在调用任何使用此通道的 EF 之前,必须先测试 与该通道关联的 IODDT 的字 EXCH_STS (%MWr.m.c.0) 的值。

使用显式对象管理交换和报告

概览

当在 PLC 存储器与模块之间交换数据时,模块可能需要多个任务周期才可确认此信息。IODDT 使 用以下两个字管理交换:

- EXCH_STS (%MWr.m.c.0):正在进行交换
- EXCH_RPT (%MWr.m.c.1):报告

注意:

根据模块的本地化,应用程序将检测不到显式交换的管理(如 %MW0.0.MOD.0.0):

- 对于机架中模块,显式交换在本地 PLC 总线中立即执行,并在执行任务结束前完成。因此,如 READ_STS,在应用程序检查 %MW0.0.mod.0.0 位时完成。
- 对于远程总线(如 Fipio),显式交换与执行任务并不同步,因此应用程序可以进行检测。

示意图

下图显示了用于管理交换的各个有效位。

有效位的描述

EXCH_STS (%MWr.m.c.0) 和 EXCH_RPT (%MWr.m.c.1) 字的每一位分别与一类参数关联:

- 序号为 0 的位与状态参数关联:
 STS_IN_PROGR 位 (%MWr.m.c. 0. 0) 指示状态字的读请求是否正在进行。
 STS ERR 位 (%MWr.m.c. 1. 0) 指定状态字的读请求是否被模块通道所接受。
- 序号为 1 的位与命令参数关联:
 CMD_IN_PROGR 位 (%MWr.m.c. 0. 1) 指示命令参数是否正发送到模块通道。
 CMD ERR 位 (%MWr.m.c. 1. 1) 指定命令参数是否被模块通道所接受。
- 序号为2的位与调整参数关联:
 - ADJ_IN_PROGR 位 (%MWr.m.c.0.2) 指示是否正在与模块通道交换调整参数(通过 WRITE PARAM、READ PARAM、SAVE PARAM、RESTORE PARAM)。
 - ADJ_ERR 位 (%MWr.m.c.1.2) 指定调整参数是否被模块所接受。如果交换正确执行,则该位设置为 0。
- 序号为 15 的位指示从控制台对模块的通道 c 进行重新配置(修改配置参数并对通道进行冷启动)。
- r、m和 c 位表示以下元素:
 - r 位表示机架号。
 - m 位表示模块在机架中的位置。
 - c 位表示通道在模块中的编号。
- 注意: r 位表示机架号,m 位表示模块在机架中的位置,而 c 位表示通道在机架中的编号。
- **注意:**按照 IODDT 类型 T_GEN_MOD,模块级别 EXCH_STS (%MWr.m. MOD) 和 EXCH_RPT (%MWr.m. MOD.1) 中也存在交换和报告字。

示例

阶段 1:使用 WRITE_PARAM 指令发送数据

当通过 PLC 扫描到指令时,将 %MWr.m.c 中的正在交换位设置为 1。 阶段 2:通过 I/O 模块和报告分析数据。

当在 PLC 存储器和模块之间交换数据时,由 ADJ_ERR 位 (%MWr.m.c.1.2) 管理的模块进行确认。 该位执行以下报告:

- 0:交换正确
- 1: 交换不正确

注意: 模块级没有调整参数。

显式交换的执行指示灯:EXCH_STS

下表显示了显式交换的控制位: EXCH_STS (%MWr.m.c.0)

标准符号	类型	访问	含义	地址
STS_IN_PROGR	BOOL	R	正在读取通道状态字	%MWr.m.c.0.0
CMD_IN_PROGR	BOOL	R	正在进行命令参数交换	%MWr.m.c.0.1
ADJ_IN_PROGR	BOOL	R	正在进行调整参数交换	%MWr.m.c.0.2
RECONF_IN_PROGR	BOOL	R	正在重新配置模块	%MWr.m.c.0.15

注意:如果模块不存在或已断开连接,则不会将显式交换对象(如 READ_STS)发送到模块 (STS_IN_PROG (%MWr.m.c.0.0) = 0),但会刷新这些字。

显式交换报告:EXCH_RPT

下表显示了报告位:EXCH_RPT (%MWr.m.c.1)

标准符号	类型	访问	含义	地址
STS_ERR	BOOL	R	在读取通道状态字时检测到错误 (1 = 检测到错误)	%MWr.m.c.1.0
CMD_ERR	BOOL	R	在交换命令参数期间检测到错误 (1 = 检测到错误)	%MWr.m.c.1.1
ADJ_ERR	BOOL	R	在交换调整参数期间检测到错误 (1 = 检测到错误)	%MWr.m.c.1.2
RECONF_ERR	BOOL	R	在重新配置通道期间检测到错误 (1 = 检测到错误)	%MWr.m.c.1.15

计数模块用途

下表介绍了启动后在计数模块和系统之间实现的步骤。

步骤	操作
1	电源接通。
2	系统发送配置参数。
3	系统通过 WRITE_PARAM 方法发送调整参数。 注: 当操作完成后,位 %MWr.m.c.0.2 切换到 0。

如果在应用程序的开头使用 WRITE_PARAM 命令,则应等待位 %MWr.m.c.0.2 切换到 0。

T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换)

对象列表(隐式交换)

下表列出了 T_STEPPER_STD 类型的 IODDT 的内部状态对象(隐式交换)

标准符号	类型	访问	描述	地址
CH_ERROR	EBOOL	读	通道故障	%lr.m.c.ERR
NEXT	EBOOL	读	准备接收新的运动命令(在"自动"模式下)	%lr.m.c.0
DONE	EBOOL	读	所有指令已执行:栈内无指令	%lr.m.c.1
AX_FLT	EBOOL	读	轴上出现错误	%lr.m.c.2
AX_OK	EBOOL	读	停止运动部件时没有出错	%lr.m.c.3
HD_ERR	EBOOL	读	存在硬件故障	%lr.m.c.4
AX_ERR	EBOOL	读	存在应用程序故障	%lr.m.c.5
CMD_NOK	EBOOL	读	命令被拒绝	%lr.m.c.6
NO_MOTION	EBOOL	读	运动部件静止	%lr.m.c.7
AT_PNT	EBOOL	读	运动部件处在目标位置 (此时在窗口中,指令处于停止状态)	%lr.m.c.8
CONF_OK	EBOOL	读	轴已配置	%lr.m.c.11
REF_OK	EBOOL	读	已获取参考点(轴被参考)	%lr.m.c.12
AX_EVT	EBOOL	读	复制事件物理输入	%lr.m.c.13
HOME	EBOOL	读	复制模块的参考点的 CAME 物理输入	%lr.m.c.3
DIRECT	EBOOL	读	指示运动方向。	%lr.m.c.15
IN_DROFF	EBOOL	读	ARRET 模式处于活动状态	%lr.m.c.16
IN_DIRDR	EBOOL	读	直接模式处于活动状态	%lr.m.c.17
IN_MANU	EBOOL	读	手动模式处于活动状态	%lr.m.c.18
IN_AUTO	EBOOL	读	自动模式处于活动状态	%lr.m.c.19
ST_DIRDR	EBOOL	读	正在直接模式下运动	%lr.m.c.3
ST_JOG_P	EBOOL	读	正在进行正向无限制运动	%lr.m.c.21
ST_JOG_M	EBOOL	读	正在进行负向无限制运动	%lr.m.c.22
ST_INC_P	EBOOL	读	正在进行正向无限制增量运动	%lr.m.c.23
ST_INC_M	EBOOL	读	正在进行负向无限制增量运动	%lr.m.c.24
ST_SETRP	EBOOL	读	正在使用手动参考点	%lr.m.c.25
ON_PAUSE	EBOOL	读	运动序列已挂起	%lr.m.c.26
IM_PAUSE	EBOOL	读	运动已挂起(立即暂停)	%lr.m.c.27
STEP_FLT	EBOOL	读	步丢失输入状态	%lr.m.c.28
EMG_STOP	EBOOL	读		%lr.m.c.29

标准符号	类型	访问	描述	地址
EXT_STOP	EBOOL	读	外部停止输入状态	%lr.m.c.30
HD_LMAX	EBOOL	读	运行终点正限位状态	%lr.m.c.31
HD_LMIN	EBOOL	读	运行终点负限位状态	%lr.m.c.32
ST_BRAKE	EBOOL	读	步进电机制动输出的映像	%lr.m.c.33
ST_BOOST	EBOOL	读	升压输出活动的映像	%lr.m.c.34
ST_DRIVE	EBOOL	读	译码器状态	%lr.m.c.35
OVR_EVT	EBOOL	读	事件溢出	%lr.m.c.36
EVT_G07	EBOOL	读	事件源:保存位置	%lr.m.c.37
EVT_G05	EBOOL	读	事件源:由于发生事件,G05 结束	%lr.m.c.38
TO_G05	EBOOL	读	事件源:G05 定时器已过时	%lr.m.c.39
EVT_G1X	EBOOL	读	事件源:由于发生事件,G10 或 G11 结束	%lr.m.c.40
POS	DINT	读	测定的位置	%IDr.m.c.0
SPEED	DINT	读	测定的速度	%IDr.m.c.2
REMAIN	DINT	读	尚未运行的剩余脉冲数	%IDr.m.c.4
SYNC_N_RUN	INT	读	正在进行的步数	%IWr.m.c.6
PREF	DINT	读	PREF 寄存器的值(仅在激活事件处理时才刷新该值)。	%IDr.m.c.7

T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换)

对象列表(隐式交换)

下表列出了 T_STEPPER_STD 类型的 IODDT 的内部控制对象(隐式交换)

标准符号	类型	访问	激活条件	描述	地址
DIRDRV	EBOOL	读/写	跳变沿	转变成直接模式的命令。	%Qr.m.c.0
JOG_P	EBOOL	读/写	跳变沿	正向无限制手动运动	%Qr.m.c.1
JOG_M	EBOOL	读/写	跳变沿	负向无限制手动运动	%Qr.m.c.2
INC_P	EBOOL	读/写	跳变沿	正向增量运动 (PARAM) 命令	%Qr.m.c.3
INC_M	EBOOL	读/写	跳变沿	负向增量运动 (PARAM) 命令	%Qr.m.c.4
SET_RP	EBOOL	读/写	跳变沿	手动参考点(RP_POS = 源值)或切换至非 参考状态	%Qr.m.c.5
RP_HERE	EBOOL	读/写	跳变沿	强制用在 PARAM 中定义的值作为参考点, 或切换至参考状态/计算偏移量	%Qr.m.c.6
STOP	EBOOL	读/写	状态	立即停止命令(停止运动部件)	%Qr.m.c.8
ACK_FLT	EBOOL	读/写	跳变沿	故障确认	%Qr.m.c.9
ENABLE	EBOOL	读/写	状态	确认轴控制器安全继电器	%Qr.m.c.10
EXT_EVT	EBOOL	读/写	跳变沿	从处理器触发事件的命令	%Qr.m.c.11
PAUSE	EBOOL	读/写	状态	用于在正在进行的运动结束后使运动挂起的 命令	%Qr.m.c.12
BRAKE	EBOOL	读/写	跳变沿	用于在步进电机中执行制动的命令	%Qr.m.c.13
BOOST	EBOOL	读/写	跳变沿	升压译码器	%Qr.m.c.14
ACK_STEPFLT	EBOOL	读/写	状态	用于使译码器步监控复位的命令	%Qr.m.c.15
MOD_SELECT	INT	读/写		模式选择器	%QWr.m.c.0
SMC	INT	读/写		速度调制 其值等于速度调制设定点的值。该设定点的 值位于 0 到 2 之间,增量为 1/1000。	%QWr.m.c.1
PARAM	DINT	读/写		运动增量的值	%QDr.m.c.2

模式选择器

MOD_SELECT:模式选择器

值	模式	描述
0	DRV_OFF	测量模式:禁用 CNA 输出
1	DIRDRIVE	禁用循环控制模式:在操作中直接控制
2	MANU	手动模式
3	AUTO	自动模式

T_STEPPER_STD 类型的 IODDT 的内部控制对象(显式交换)

概览

本部分介绍了 T_STEPPER_STD 类型的 IODDT 的内部状态对象(显式交换),该类型适用于 TSX CFY11/21 模块。它对字类型对象进行分组,这些字类型对象的位具有特殊意义。下面将详细介绍 这些对象。

注:

- 通常,所说的位的含义指的是该位的状态为1时的含义。在某些情况下,将解释位的每个状态。
- 并未使用所有位。

交换的管理:EXCH_STS

下表介绍了通道交换检查位 EXCH_STS (%MWr.m.c.0) 的含义。

标准符号	类型	访问	含义	地址
STS_IN_PROGR	BOOL	读	正在交换状态参数 (STATUS)	%MWr.m.c.0.0
CMD_IN_PROGR	BOOL	读	正在进行命令参数交换	%MWr.m.c.0.1
ADJ_IN_PROGR	BOOL	读	正在交换调整参数	%MWr.m.c.0.2
RECONF_IN_PROGR	BOOL	读	正在重新配置模块	%MWr.m.c.0.15

交换报告:EXCH_RPT

下表介绍了报告位 EXCH_RPT (%MWr.m.c.1) 的含义。

标准符号	类型	访问	含义	地址
STS_ERR	BOOL	读	状态参数 (STATUS) 交换报告	%MWr.m.c.1.0
CMD_ERR	BOOL	读	命令参数交换报告	%MWr.m.c.1.1
ADJ_ERR	BOOL	读	调整参数交换报告	%MWr.m.c.1.2
RECONF_ERR	BOOL	读	配置故障	%MWr.m.c.1.15

通道工作状态:CH_FLT

下表介绍了状态字 CH_FLT (%MWr.m.c.1) 的各个位的含义。

标准符号	类型	访问	含义	地址
EXT_FLT	BOOL	读	外部错误(idem HD_ERR 位)	%MWr.m.c.2.0
MOD_FLT	BOOL	读	内部错误:缺少模块、运行不正常或处于自测模式中	%MWr.m.c.2.4
CONF_FLT	BOOL	读	硬件或软件配置错误	%MWr.m.c.2.5
COM_FLT	BOOL	读	与处理器通讯时出错	%MWr.m.c.2.6
APP_FLT	BOOL	读	应用故障(无效配置)或命令故障	%MWr.m.c.2.7

标准符号	类型	访问	含义	地址
CH_LED_LOW	BOOL	读	通道灯的状态有三种情况:	%MWr.m.c.2.7
CH_LED_HIGH	BOOL	读	 位 8 = 位 9 = 0 时,通道 LED 熄灭 位 8 = 位 9 = 0 时,通道 LED 闪烁 位 8 = 位 9 = 1 时,通道 LED 亮起 	%MWr.m.c.2.9

轴工作状态:AX_STS

下表介绍了状态字 AX_STS (%MWr.m.c.3) 的各个位的含义。

标准符号	类型	访问	含义	地址
硬件故障:HD_ERR (%lr.m.c.4)(其中包 括以下故障)				
BRAKE_FLT	BOOL	读	制动输出处出现短路故障	%MWr.m.c.3.1
DRV_FLT	BOOL	读	驱动器故障	%MWr.m.c.3.2
EMG_STP	BOOL	读	紧急停止故障	%MWr.m.c.3.5
AUX_SUP	BOOL	读	24 V 电源故障	%MWr.m.c.3.6
应用故障:AX_ERR (%lr.m.c.5)(其中包 括以下故障)				
SLMAX	BOOL	读	最大软停止过冲	%MWr.m.c.3.3
SLMIN	BOOL	读	最小软停止过冲	%MWr.m.c.3.4

其他状态数据

下表介绍了其他状态数据的含义。

标准符号	类型	访问	含义	地址
N_RUN	INT	读	正在进行的步数	%MWr.m.c.4
G9_COD	INT	读	正在进行的运动类型	%MWr.m.c.5
G_COD	INT	读	正在执行的指令代码	%MWr.m.c.6
CMD_FLT	INT	读	拒绝报告	%MWr.m.c.7
T_XPOS	DINT	读	要到达的目标位置	%MDr.m.c.8
T_SPEED	DINT	读	要达到的速度	%MDr.m.c.10

注意: 所有这些内部状态数据均通过执行指令 READ_STS 进行更新。
T_STEPPER_STD 类型的 IODDT 的调整参数的对象(显式交换)

调整参数

%MWr.m.c.d或%MDr.m.c.d

标准符号	类型	访问	描述	地址
ACC	DINT	读/写	加速度值,它取决于用户定义的单位	%MDr.m.c.12
SL_MAX	DINT	读/写	上位软停止:对于受限轴,则为 SLMIN 至 LMAX 对于无限轴,则为模数(单位:点)	%MDr.m.c.14
SL_MIN	DINT	读/写	低位软停止:对于受限轴,则为 LMIN 至 SLMAX 对于无限轴,则为模数值(单位:用户单位)	%MDr.m.c.16
SS_FREQ	DINT	读/写	启动和停止速度:0 至 FMAX	%MDr.m.c.18
MAN_SPD	DINT	读/写	手动模式速度:10 至 VMAX	%MDr.m.c.20
RP_POS	DINT	读/写	手动模式下的参考点值:SLMIN 至 SLMAX	%MDr.m.c.22
BRK_DLY1	INT	读/写	用于停用制动的移位寄存器:-1000 到 1000	%MWr.m.c.24
BRK_DLY2	INT	读/写	用于激活制动的移位寄存器:-1000 到 1000	%MWr.m.c.25
STOP_DLY	INT	读/写	在启动和停止速度下,停止阶段的持续时间:0 到 1000	%MWr.m.c.26

注意: 这些调整参数需通过执行 READ_PARAM 功能进行更新。

处理器与轴控模块之间的交换

显示交换的示意图

处理器与轴控模块之间的各种交换如下所示:

(1) 使用显式交换指令,从调整屏幕或应用程序读取或写入其中。

(2) 使用 Control Expert **服务**菜单中的**保存参数**或**恢复参数**命令或使用 SAVE_PARAM 或 RESTORE_PARAM 指令进行保存或恢复。

错误代码列表 (CMD_FLT)

概览

"命令被拒绝字"CMD_FLT (%MWr.m.c.7) 可通过显式更改读取。诊断对话框中的消息也可以是非 加密格式的,可以使用命令 **DIAG** 进行访问。

字 CMD_FLT 的每个字节都对应一种错误类型:

- 最高有效字节表示配置和调整参数出现错误 (XX00)。
- 最低有效字节表示拒绝执行运动命令 (00XX)。

例如:CMD_FLT = 0004(最低有效字节表示命令 JOG+ 出错)。 电机 CMD_FLT

配置

这些错误通过字 CMD_FLT 的最高有效字节表示。括号中的数字表示代码的十六进制值。

值	含义
2 (2)	参考点配置错误
3 (3)	事件优先级配置错误
4 (4)	最大频率配置错误
5 (5)	最大加速度配置错误

调整参数

这些错误通过字 CMD_FLT 的最高有效字节表示。括号中的数字表示代码的十六进制值。

值	含义
7 (07)	加速配置文件参数错误
8 (08)	软件上限参数错误
9 (09)	软件下限参数错误
10 (0A)	启动和停止频率参数错误
11 (0B)	手动模式下的频率参数错误
12 (0C)	参考点值参数错误
13 (0D)	延迟停用制动参数错误

值	含义
14 (0E)	延迟激活制动参数错误
15 (0F)	停止阶段参数错误
32 (20)	参数错误,运动期间出现多个 WRITE_PARAM

运动命令被拒绝

这些错误通过字 CMD_FLT 的最低有效字节表示。括号中的数字表示代码的十六进制值。

值	消息
1 (1)	手动命令错误 - 条件不足(模式、值等)
2 (2)	手动命令错误 - 正在进行手动运动
3 (3)	手动命令错误 - 同时命令
4 (4)	手动命令错误 - JogP
5 (5)	手动命令错误 - JogM
6 (6)	手动命令错误 - IncP
7 (7)	手动命令错误 - IncM
8 (8)	手动命令错误 - IncP 参数
9 (9)	手动命令错误 - IncM 参数
10 (0A)	手动命令错误 - 手动 RP
11 (0B)	手动命令错误 - 强制 RP
12 (0C)	自动命令错误 - 条件不足(参数)
13 (0D)	自动命令错误 - 正在自动运动
14 (0E)	SMOVE 命令错误 - 条件不足(模式)
15 (0F)	SMOVE G01 命令错误 (1)
16 (10)	SMOVE G09 命令错误 (1)
17 (11)	SMOVE G10 命令错误 (1)
18 (12)	SMOVE G11 命令错误 (1)
21 (15)	SMOVE G14 命令错误 (1)
22 (16)	SMOVE G05 命令错误 (1)
23 (17)	SMOVE G07 命令错误 (1)
24 (18)	SMOVE G62 命令错误 (1)
25 (19)	SMOVE 执行命令错误
26 (1A)	自动命令错误 - 正在运动
27 (1B)	自动命令错误 - 堆栈已满
48 (30)	直接驱动命令错误 - 命令不足
49 (31)	直接驱动命令错误 - 正在更改模式

值	消息
50 (32)	直接驱动命令错误 - 正在移动轴
51 (33)	直接驱动命令错误-轴已停止
52 (34)	直接驱动命令错误 - 轴已禁用
53 (35)	直接驱动命令错误 - 阻塞故障
54 (36)	直接驱动命令错误 - 频率低于 SS_FREQ
55 (37)	直接驱动命令错误 - 频率高于 FMAX
56 (38)	直接驱动命令错误 - 轴位于运行终点正限位
57 (39)	直接驱动命令错误 - 轴位于运行终点负限位
58 (3A)	直接驱动命令错误 - 轴位于运行终点正限位之外
59 (3B)	直接驱动命令错误 - 轴位于运行终点负限位之外
60 (3C)	直接驱动命令错误 - 轴位于软件上限之外
61 (3D)	直接驱动命令错误 - 轴位于软件下限之外
96 (60)	手动JogP 命令错误 - 位于软件上限
97 (61)	手动JogP 命令错误 - 轴已停止
101 (65)	手动JogP 命令错误 - 正在进行 JogM 运动
102 (66)	手动JogP 命令错误 - 位于运行终点正限位
103 (67)	手动JogP 命令错误 - 位置高于运行终点正限位
108 (6C)	手动JogP 命令错误 - 阻塞故障而不是软件限位
109 (6D)	手动JogP 命令错误 - 未确认的软件限位阻塞故障
110 (6E)	手动JogP 命令错误 - 轴已禁用
113 (71)	手动JogM 命令错误 - 轴已停止
116 (74)	手动JogM 命令错误 - 正在进行 JogP 运动
118 (76)	手动JogM 命令错误 - 位于运行终点负限位
119 (77)	手动JogM 命令错误 - 位置高于运行终点负限位
124 (7C)	手动JogM 命令错误 - 阻塞故障而不是软件限位
125 (7D)	手动JogM 命令错误 - 未确认的软件限位阻塞故障
126 (7E)	手动JogM 命令错误 - 轴已禁用
127 (7F)	手动JogM 命令错误 - 位于软件下限
130 (82)	手动IncP 命令错误 - 位置低于软件下限
131 (83)	手动IncP 命令错误 - 位置高于软件上限
132 (84)	手动IncP 命令错误 - 正在进行 JogP 运动
133 (85)	手动IncP 命令错误 - 正在进行 JogM 运动
134 (86)	手动IncP 命令错误 - 位于运行终点负限位
135 (87)	手动IncP 命令错误 - 位置高于运行终点正限位

值	消息
136 (88)	手动IncP 命令错误 - 未参考轴
137 (89)	手动IncP 命令错误 - 引起了软件下限的移动
138 (8A)	手动IncP 命令错误 - 停止条件
141 (8D)	手动IncP 命令错误 - 轴已禁用
146 (92)	手动IncM 命令错误 - 位置低于软件下限
147 (93)	手动IncM 命令错误 - 位置高于软件上限
148 (94)	手动IncM 命令错误 - 正在进行 JogM 运动
149 (95)	手动IncM 命令错误 - 正在进行 JogM 运动
150 (96)	手动IncM 命令错误 - 位于运行终点负限位
151 (97)	手动IncM 命令错误 - 位置高于运行终点正限位
152 (98)	手动IncM 命令错误 - 未参考轴
154 (9A)	手动命令错误 - IncM 停止条件
155 (9B)	手动IncM 命令错误 - 引起了软件上限的移动
158 (9E)	手动IncM 命令错误 - 轴已禁用
164 (A4)	手动 RP 和手动 IncP 命令错误 - 正在进行 JogP 运动
165 (A5)	手动 PO 和手动 IncM 命令错误 - 正在进行 JogM 运动
170 (AA)	手动命令错误 - 手动 PO 停止条件
174 (AE)	手动命令错误 - 手动 PO 已禁用轴
178 (B2)	手动命令错误 - 强制的 RP 位置低于软件下限
179 (B3)	手动命令错误 - 强制的 RP 位置高于软件上限
180 (B4)	手动命令错误 - 正在进行强制 RP JogP 运动
181 (B5)	手动命令错误 - 正在进行强制 RP JogM 运动
189 (BD)	手动命令错误 - 未确认软件限位错误便强制 RP
190 (BE)	

(1) 表明 SMOVE 功能的一个参数不符合要求。示例:无效的运动类型代码、软件限位之外的位置、速度超出了 FMAX 等。

T_GEN_MOD 类型 IODDT 语言对象的详细信息

简介

Premium PLC 模块与 T_GEN_MOD 类型 IODDT 关联。

注意

- 通常情况下,位含义是针对位状态为 1 给出的。特定情况下,会针对位的每个状态给出解释。
- 不是所有位都会用到。

对象列表

下表显示了 IODDT 的对象:

标准符号	类型	访问	含义	地址
MOD_ERROR	BOOL	R	模块错误位	%lr.m.MOD.ERR
EXCH_STS	INT	R	模块交换控制字	%MWr.m.MOD.0
STS_IN_PROGR	BOOL	R	正在读取模块的状态字	%MWr.m.MOD.0.0
EXCH_RPT	INT	R	交换报告字	%MWr.m.MOD.1
STS_ERR	BOOL	R	在读取模块状态字时检测到错误	%MWr.m.MOD.1.0
MOD_FLT	INT	R	模块的内部错误字	%MWr.m.MOD.2
MOD_FAIL	BOOL	R	内部错误,不可用模块	%MWr.m.MOD.2.0
CH_FLT	BOOL	R	检测到通道错误	%MWr.m.MOD.2.1
BLK	BOOL	R	端子块错误	%MWr.m.MOD.2.2
CONF_FLT	BOOL	R	硬件或软件配置不匹配	%MWr.m.MOD.2.5
NO_MOD	BOOL	R	模块缺失或不工作	%MWr.m.MOD.2.6
EXT_MOD_FLT	BOOL	R	模块的内部错误字(仅限 Fipio 扩展)	%MWr.m.MOD.2.7
MOD_FAIL_EXT	BOOL	R	模块无法使用(仅限 Fipio 扩展)	%MWr.m.MOD.2.8
CH_FLT_EXT	BOOL	R	检测到通道错误(仅限 Fipio 扩展)	%MWr.m.MOD.2.9
BLK_EXT	BOOL	R	检测到端子块错误(仅限 Fipio 扩展)	%MWr.m.MOD.2.10
CONF_FLT_EXT	BOOL	R	硬件或软件配置不匹配(仅限 Fipio 扩展)	%MWr.m.MOD.2.13
NO_MOD_EXT	BOOL	R	模块缺失或不工作(仅限 Fipio 扩展)	%MWr.m.MOD.2.14

索引

C2

ABE-7H16R20, 78 DIRDRIVE, 131 JOG, 124 速度, 126 OFF 模式. 133 SMOVE, 96 指令代码, 98 SMOVE 事件-G05. 105 SMOVE 事件-G07, 106 T_GEN_MOD, 203 T_STEPPER_STD, 203 TSXCFY11, 83 TSXCFY21. 83 TSXTAPS1505, 69 TSXTAPS1524, 69 事件处理, 115 位序列. 109 关闭模式. 183 功能, 17 参数设置, 203 参考点. 129 存储器缓冲区, 109 常见问题解答, 193 快速入门. 29 性能. 201 手动模式, 124 接线注意事项,81 故障监控 外部, 159 应用, 122 故障管理. 117 用于步进器电机控制模块的通道数据结构 T_STEPPER_STD, 203 编程.91 自动模式, 94 诊断, 203 调试. 179 连接基板. 70 译码器信号, 64, 65, 71 连接设备, 70 配置. 135

错误代码, 219 馈给保持, 113